
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Jakub Kĺımek

Evoluce XML schémat

XML schema evolution

Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: Mgr. Martin Nečaský, Ph.D.

Studijńı program: Informatika, softwarové systémy

2009

Na tomto mı́stě bych rád poděkoval svému vedoućımu softwarového pro-
jektu a diplomové práce Mgr. Martinu Nečaskému, Ph.D za neocenitelnou
podporu a hodnotné rady. Dále bych chtěl poděkovat svým rodič̊um za to,
že mi umožnili plně se soustředit na studium a př́ıpravu této práce.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s
použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 5.8.2009 Jakub Kĺımek

2

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Aim of this thesis . 10
1.3 Outline . 11

2 XML Technologies 13
2.1 XML . 13

2.1.1 Constructs . 14
2.1.2 Syntax . 14
2.1.3 Correctness . 15

2.2 XML schemas . 15

3 XML Evolution Architecture 16
3.1 Conceptual levels . 16

3.1.1 Model-Driven Architecture 17
3.1.2 Earlier approaches 17
3.1.3 XSEM . 19
3.1.4 XSEM PIM components 19
3.1.5 XSEM PSM components 20
3.1.6 XCase - Tool for XML Data Modeling 22

3.2 Logical levels . 23
3.2.1 Schema level . 23
3.2.2 Operational level . 23
3.2.3 Extensional level . 24

4 Related work 25
4.1 Existing approaches to schema matching 25

4.1.1 Element-level techniques 25
4.1.2 Structure-level techniques 29
4.1.3 Cupid . 30
4.1.4 Nečaský . 31

4.2 Existing approaches to XML schema evolution 34
4.2.1 E. Domı́nguez et al. 34

3

4.2.2 Meike Klettke: Conceptual XML Schema Evolution . 35

5 Mapping creation 36
5.1 Algorithm description . 36

5.1.1 Attribute similarity 37
5.1.2 PIM and PSM class similarity 39
5.1.3 Structural similarity and class mapping 42
5.1.4 Attribute mapping 45
5.1.5 PSM associations . 47

5.2 Methods for refining PIM paths 47
5.2.1 Refusing associations 48
5.2.2 Manual PIM path selection 49

5.3 Adjusting the PIM . 50
5.3.1 Missing PIM classes 50
5.3.2 PIM-less attributes 50
5.3.3 Missing PIM . 50

5.4 Analysis . 50

6 Evolution operations 53
6.1 Atomic operations . 53

6.1.1 PIM level . 54
6.1.2 PSM level . 55

6.2 Propagation of changes . 56
6.2.1 PIM level . 56
6.2.2 PSM level . 58

6.3 Composite operations . 59

7 Conclusions 63
7.1 Open problems . 64

7.1.1 Reverse engineering of XML schemas 64
7.1.2 Generating XML schemas from PSM diagrams 64

7.2 Future work . 64
7.2.1 Mapping creation enhancements 64
7.2.2 XSLT transformations for modifying XML documents 65

8 CD contents 66

Bibliography 67

A Used XML Schemas 70
A.1 Figure 4.1(a) . 70
A.2 Figure 4.1(b) . 71
A.3 Message 1 (Figure 1.2(a)) 72
A.4 Message 2 (Figure 1.2(b)) 73

4

A.5 Message 3 (Figure 1.2(c)) 73
A.6 Message 4 (Figure 1.3(a)) 74
A.7 Message 5 (Figure 1.3(b)) 74
A.8 Message 6 (Figure 1.3(c)) 75

5

Název práce: Evoluce XML schémat
Autor: Jakub Kĺımek
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: Mgr. Martin Nečaský, Ph.D.
e-mail vedoućıho: necasky@ksi.ms.mff.cuni.cz

Abstrakt: V předložené práci studujeme možnosti v oblasti evoluce XML
schémat. Práce obsahuje přehled existuj́ıćıch technik pro konceptuálńı mo-
delováńı XML dat, sjednocováńı schémat a evoluci XML schémat. Je zde
prezentována nová poloautomatická technika pro napojeńı XML schémat na
konceptuálńı model založená na modelu XSEM pro konceptuálńı modelováńı
XML dat využ́ıvaj́ıćım MDA, která velmi zjednodušuje a usnadňuje návrh
a údržbu sady XML schémat v informačńım systému. Dále práce obsahuje
sadu evolučńıch operaćı, pomoćı kterých je možné měnit konceptuálńı model
a změny automaticky propagovat do napojených XML schémat.

Kĺıčová slova: XML, XSEM, evoluce, mapováńı

Title: XML schema evolution
Author: Jakub Kĺımek
Department: Department of Software Engineering
Supervisor: Mgr. Martin Nečaský, Ph.D.
Supervisor’s e-mail address: necasky@ksi.ms.mff.cuni.cz

Abstract: In the present work we study possibilities in the area of XML
schema evolution. The thesis contains a survey of conceptual modeling of
XML data, schema matching and XML schema evolution. A new semi-
automatic technique of connecting XML schemas to a conceptual model based
on XSEM, a model for conceptual modeling of XML data based on MDA, is
presented. It makes the design and maintenance of a set of XML schemas in
an information system simpler and easier. In addition, the thesis contains
a set of evolution operations allowing changes in the conceptual model to be
automatically propagated to the connected XML schemas.

Keywords: XML, XSEM, evolution, mapping

6

Chapter 1

Introduction

In a typical modern business, data exchange throughout the IT infrastruc-
ture is achieved by using XML [27] in some way (i.e. Web services [8], e-
commerce). Also, XML is used as a data storage format in various data-
bases [5]. To assure compatibility, one or more XML formats among com-
municating parties must be established. To prevent chaos, these are de-
scribed by XML schemas written in an XML schema language like DTD [27],
XML Schema [28] or Relax NG [7]. The advantage is that each time an
XML document is processed, a check against a specified XML schema can
be performed to ensure its validity.

Imagine an information system made of several components which com-
municate among each other using XML. Because each component of the
system performs a different task, many different XML formats will be used.
When the XML formats are specified with XML schemas, everything works
fine until a need for change arises.

When a larger number of existing XML schemas needs to be changed in
time as the business they are part of evolves, the problem with this approach
becomes obvious. For example, changing a representation of a client’s name
from being represented by one value into being represented by first name
and last name, becomes time consuming, frustrating and error-prone action.
It requires a domain expert to go through every single XML schema to check
whether the changed object is present in that schema and if it is, to change
it. As the number of affected schemas grows, the probability of a mistake
grows as well.

The process of incorporating changes into a set of XML schemas is what
we call XML schema evolution.

7

1.1 Motivation

As an example of the problem of XML schema evolution, let us have a com-
pany that receives orders and let us focus on a part of the system that pro-
cesses purchases as seen on Figure 1.1. Let the messages used in the process
be XML messages each with a separate XML schema. The XML schemas
are visualized in Figures 1.2 and 1.31. The process goes as follows:

Figure 1.1: Example of a system with 6 XML schemas

1. A client process sends an order to the aggregator. The order contains
a list of items purchased and an address to which to send the order.
(Figure 1.2(a))

2. The aggregator sends the list of items to the inventory. (Figure 1.2(b))

3. The inventory checks if the items are available and, if they are, makes a
reservation. Then it sends a response containing a reservation number
to the aggregator. (Figure 1.2(c))

4. If the items are in stock the aggregator sends a message containing the
reservation number and the address to the distribution. (Figure 1.3(a))

5. Distribution registers the order for expedition and sends a confirmation
to the aggregator. (Figure 1.3(b))

6. The aggregator sends a confirmation or an ”out-of-stock” message back
to the client. (Figure 1.3(c))

This example is simplified, i.e. in reality, the elements would have more
attributes, but it is enough to demonstrate the approaches presented in

1The figures show graphical representations of XML schemas called PSM diagrams,
explained later in 3.1.5. The corresponding XML Schemas (references in brackets) are in
Appendix A.

8

(a) Message 1 (A.3) (b) Message 2 (A.4) (c) Message 3 (A.5)

Figure 1.2: Example schemas of messages - part I

this thesis. All the messages in the process deal with the same data, al-
though some of them use only a subset of the data. We could say that the
XML schemas specify views on the data. To be specific, message 1 contains a
list of items and an address, message 2 contains only the list of items, but not
the address, as it is not needed in the inventory. It provides a simplified view
on the data that best suits the purpose of the message. These XML schemas
need to be designed and maintained, which today is done mostly manually.
For example, to change the representation of a customer’s name from one
value name to a pair of values forename and surname, a domain expert
would have to identify the messages containing this value (Messages 1 and
4 in our case) and change it in each message manually. Remember that our
example is only a small part of a company’s infrastructure, so in real life, it
could be dozens of schemas instead of two in our case and also the changes
made to them can be far more complicated.

9

(a) Message 4 (A.6) (b) Message 5 (A.7) (c) Message 6 (A.8)

Figure 1.3: Example schemas of messages - part II

1.2 Aim of this thesis

One of the first possible steps to a solution of the problem of XML schema
evolution is an introduction of a conceptual model, to which all the schemas
would be mapped and which would connect them. The schemas from our
example can be connected to an appropriate conceptual diagram that could
look like the one in Figure 1.4. Then they can be evolved automatically
using a single command issued at the conceptual level. The changes are then
propagated to the XML schemas through these connections. This eliminates
the process of identifying affected schemas, as this is done automatically
using the connections to the conceptual model. The process is also much
faster and more reliable, because it is no longer possible to overlook an
occurrence of the changed entity or overwrite something else in the process.

The most common situation in today’s businesses is as follows. Some
kind of a conceptual diagram describing the problem domain (all of the
company’s data) is present, and a set of XML schemas describing all kinds
of messages, queries and databases working with the same data is present as
well. What is missing are the links connecting individual elements and types
in those separate XML schemas to the elements of the conceptual model. As
implied before, we will need these links to propagate changes to the schemas
automatically. Because of this fact, the first step in XML schema evolution
should be to connect the XML schemas to a conceptual model. The first

10

Figure 1.4: Example of a conceptual diagram

aim of this thesis is to propose a semi-automatic method of building those
connections when the conceptual model and the XML schemas are present.

When our first aim is accomplished, we will be in a situation in which we
have one conceptual model and a set of XML schemas connected to it. The
user will be able to make changes to the conceptual model and propagate
the changes to the XML schemas. Also, changes made to the XML schemas
will be propagated to the conceptual model and from there back to the other
affected XML schemas. Our second aim is to propose a set of operations on
both the conceptual and XML schema levels to satisfy the most common
needs when evolving XML schemas, including the propagation of changes
between the levels.

1.3 Outline

The structure of the rest of this thesis follows the process of XML schema
evolution. In Chapter 2, we provide a very brief survey of XML technologies.
In Chapter 3, an introduction to a 5-level XML evolution architecture and
conceptual modeling of XML data is presented, as those parts are impor-
tant in the process of connecting XML schemas to a conceptual diagram.
Another important part is described in Chapter 4, which contains a brief
survey of some basic techniques used in schema matching, some of which
are used in the approach presented in this thesis. It also contains a brief
survey of related work in the area of schema matching, reverse engineer-
ing of XML schemas and XML schema evolution. Chapter 5 introduces the

11

technique of connecting an XML schema to a conceptual model suggested as
the initial step in XML schema evolution. Chapter 6 continues in describing
the process. It contains detailed description of operations that can be per-
formed as evolution steps. Finally, Chapter 7 concludes and provides future
direction of research in the area.

12

Chapter 2

XML Technologies

In this chapter, a brief introduction to XML and XML schemas is presented.

2.1 XML

XML (eXtensible Markup Language) [27] is a markup language designed to
structure, transport and store data. Today, it is used almost everywhere
because of its simplicity, platform independence and because it enables the
user to define his own elements, making it universal and customizable. XML
is a W3C recommendation1. An example of a XML document is in Figure 2.1.

<?xml version="1.0" encoding="UTF-8"?>

<order>

<customer>

<name>John Doe</name>

<address>

<street>1600 Pennsylvania Avenue</street>

<city>Washington, DC</city>

<country>USA</country>

</address>

</customer>

<list>

<item name="apple" qty="1"/>

<item name="orange" qty="3"/>

</list>

</order>

Figure 2.1: XML document example

1http://www.w3c.org/XML

13

http://www.w3c.org/XML

2.1.1 Constructs

Basic building blocks of XML documents are elements and attributes (and
other secondary structures not important for this thesis). An element con-
sists of two tags - an opening tag and a closing tag. A tag is a text enclosed in
an opening and closing angle bracket. There can be other elements nested in
an element, therefore an XML document has a tree structure. An attribute
is a piece of information describing the element. It consists of an attribute
name, an equals sign and an attribute value enclosed in single or double
quotes.

2.1.2 Syntax

There are a few easy syntax rules for XML documents2:

All XML elements must have a closing tag.

An element consists of two tags - an opening tag and a closing tag3:

<order> ... </order>

There is one exception. It is possible to have an empty element. In that case,
it is OK to write:

<order/>

XML tags are case sensitive

XML is case sensitive, therefore it is not possible to write:

<Order> ... </order>

XML elements must be properly nested

It is not possible to write:

<order><customer></order></customer>

The correct order is:

<order><customer></customer></order>

2http://www.w3schools.com/xmL/xml_syntax.asp
3The XML declaration is not part of the XML document, therefore it has no closing

tag.

14

http://www.w3schools.com/xmL/xml_syntax.asp

XML documents must have a root element

In other words, the whole document needs to be one element with other
elements inside it. For example, see Figure 2.1.

2.1.3 Correctness

There are two levels of correctness for XML documents.

Well-formed

A well-formed XML document is a document conforming to XML syntax
rules.

Valid

A valid XML document additionally conforms to syntactic rules defined
in an XML schema written in any one of the XML schema languages like
DTD [27], XML Schema [28] or Relax NG [7].

2.2 XML schemas

An XML schema is a description of a type of XML document. It contains
constraints on the content and structure of an XML document that conforms
to this schema. This can be useful when several parties want to communicate,
because they can establish a common format to which they must adhere.
Each XML document exchanged can then be checked against this common
schema.

There are several XML schema languages, in which the constraints can
be expressed. These include a relatively limited DTD [27] (Document Type
Definition), which is native to the XML specification, and newer languages
like XML Schema [28] and Relax NG [7].

In a typical IT infrastructure, there is usually a set of XML schemas
describing all kinds of messages used in the system, as well as, for example,
a database structure. Managing these sets of XML schemas is the theme of
this thesis.

Examples of schemas in XML Schema can be found in Appendix A.

15

Chapter 3

XML Evolution Architecture

Figure 3.1: Five level XML evolution architecture

In this thesis, we view the problem of XML evolution as having five levels
as it can be seen in Figure 3.1. Components from all levels are connected
with components from one level above and one level below. This allows for a
change anywhere in the system to be propagated through these connections
to all affected places automatically. The levels in the figure can be divided
into two groups. The platform-independent and platform-specific levels are
called conceptual levels. The remaining three levels, the schema, operational
and extensional, containing the actual files present in the system, are called
logical levels. In this thesis, we will focus on the conceptual levels, as they
are paramount for the XML schema evolution, as mentioned before. The
following sections describe these levels in detail.

3.1 Conceptual levels

The two conceptual levels are platform-independent and platform-specific.
They are based on MDA - Model-Driven Architecture.

16

3.1.1 Model-Driven Architecture

Model-Driven Architecture (MDA) [16] is a general approach to modeling
software systems and can be profitably applied to data modeling as well.
MDA distinguishes several types of models that are used for modeling at
different levels of abstraction. For this thesis, two types of models are im-
portant. A Platform-Independent Model (PIM) allows modeling data at the
conceptual level. A PIM diagram is abstracted from a representation of the
data in concrete data models such as relational or XML. A Platform-Specific
Model (PSM) models how the data is represented in a target data model
(such as XML). For each target data model, we need a special PSM that is
able to capture its implementation details. A PSM diagram then models a
representation of the problem domain in this particular target data model,
it provides a mapping between the conceptual diagram and a target data
model schema.

Because we want to model XML representations of data, we need a con-
ceptual model based on MDA, that would allow us to model data on the
PIM level as well as various XML formats on the PSM level. In section 3.1.2,
we will describe some conceptual models for XML which do not apply MDA
sufficiently and therefore are not suitable for this thesis. In section 3.1.3, we
will describe a conceptual model called XSEM [18], which is a proper model
for this thesis.

3.1.2 Earlier approaches

In practice, two conceptual modeling languages are usually considered: En-
tity-Relationship Model (ER) [6] and Unified Modeling Language (UML) [20].
The main disadvantage of approaches in the area is that they do not apply
MDA sufficiently which brings problems.

ER–based approaches

ER is used for conceptual modeling of relational databases. It contains two
modeling constructs. Entity types are for modeling real–world concepts. Re-
lationship types are for modeling associations among concepts. Both can
have attributes that model characteristics of a concept or association. Ap-
proaches in this category extend ER to be suitable for conceptual modeling
of XML schemas. They consider the basic ER constructs and add new ones.
EER [2] adds constructs for modeling specifics of DTD. XER [24] allows
modeling specifics of XML Schema. There are also approaches extending
ER with constructs that do not strictly follow any target XML schema lan-
guage. Examples of such approaches are EReX [14], ERX [22] or X-Entity
[12].

17

The authors of these approaches do not consider MDA, but their pro-
posed models are in fact PSMs. This has two negative impacts: (1) At the
conceptual level, the designer considers how the data is represented in a
XML schema instead of considering the data itself. This does not belong to
the conceptual level where one should model the domain independently of
target XML schemas. (2) For two different XML schemas two independent
conceptual diagrams must be designed without any interrelation. When a
concept is represented in both, it must be modeled twice. This makes the
conceptual diagrams non–transparent and goes against the principles of con-
ceptual modeling.

UML-based approaches

UML is a language composed of several sublanguages designed for mod-
eling aspects of software systems. For data modeling, a part called UML
class diagrams is applied. The basic constructs are classes and associa-
tions whose semantics is similar to ER entity and relationship types. Classes
have attributes. Neither ER nor UML can be directly applied for modeling
XML schemas and must be extended. There already are approaches based
on UML [4][17][23] which apply MDA. As a PIM they apply the UML class
diagrams. As a PSM they propose profiles. A profile is a set of stereotypes
- constructs that can be applied to a construct in a PIM diagram and that
specify how this PIM construct is represented in an XML schema. There
are only minor differences in the profiles proposed by the approaches in this
group. A typical representative of this approach is Enterprise Architect [26].

These approaches apply MDA but have significant drawbacks. They are
dependent on a certain XML schema language: proposed PSMs are usually
intended for XML Schema. Moreover, they consider automatic derivation of
PSM diagrams from a PIM diagram. In practice, we need to specify several
different XML schemas that represent our problem domain for various situ-
ations. Therefore, it would be more practical if a designer could derive more
PSM diagrams from the same PIM diagram according to user requirements.
This cannot be done automatically, manual participation of the designer in
the process is necessary.

XML schema visualization

XML schema visualization is based on visualizing the constructs of a par-
ticular XML schema language, usually XML Schema, and does not consider
MDA at all. It is widely applied in practice and implemented in commercial
XML schema design tools, e.g. Altova XML Spy [1]. They do not provide
any shift of XML schema languages toward conceptual modeling and do
not eliminate problems with applying XML schema languages for designing

18

XML schemas.

3.1.3 XSEM

The approaches presented in this thesis are based on XSEM [18, p. 47-108], a
conceptual model for XML. It utilizes UML class diagrams to apply MDA to
model XML data on two levels: PIM and PSM. For example, a PIM can be
a description of a company domain, which usually already exists. A PSM di-
agram is a visualization of a single XML schema describing a specific type of
an XML message used in the company’s IT infrastructure. While the PIM
is usually only one, there can be any number of PSM diagrams representing
different views on the same company data as used under different circum-
stances. An example of this can be a company receiving an order via its
e-shop and the company’s managers requesting a list of customers. Both of
these actions are usually implemented as XML messages described by sepa-
rate XML schemas, but using the same data (i.e. customer’s identification).

The main feature is that all the XSEM PSM components are formally
interrelated with the components of the PIM level. This allows for describ-
ing semantics of the PSM components by components from the PIM level.
Using this, a software implementing XSEM can maintain connections be-
tween corresponding PIM and PSM components. These connections enable
a change in a PIM component (class, association, etc.) to be propagated to all
the affected PSM components (i.e. PSM Class representing XML Schema’s
complex type) in PSM diagrams (which directly represent XML schemas).
Even more interestingly, a change in a PSM component can be propagated
to the PIM level, where all the other derived1 PSM components can be dis-
covered and updated as well. In other words, when someone decides that
a customer’s name is to be represented by two values (first and last name)
instead of one string, it is possible to automatically find all relevant usages
of this value and change all the affected XML schemas and the conceptual
diagram at the same time. This approach has already been implemented in
XCase - A Tool for XML Data Modeling2 described later in 3.1.6.

3.1.4 XSEM PIM components

In this section, the PIM components used by XSEM are described. XSEM
uses UML class diagrams for PIM, so the basic constructs remain the same.
The example of a conceptual diagram in Figure 1.4 is in fact a PIM diagram.
A more detailed description follows:

1PSM components connected to the PIM components are derived from the PIM com-
ponents.

2http://www.ksi.mff.cuni.cz/xcase

19

http://www.ksi.mff.cuni.cz/xcase

PIM Classes

PIM classes are the basic constructs of the PIM. They have a name and
they can have attributes and operations. As operations are not relevant to
conceptual modeling of XML, we will further ignore them. Attributes are
described in the next paragraph. Classes can be connected through associ-
ations, which are also described later in this section.

PIM Attributes

A PIM attribute belongs to a PIM class. It can have a name, data type,
default value and multiplicity. The multiplicity consists of two values, lower
and upper, describing the lowest and the highest number of occurrences the
attribute can have within one PIM class.

PIM Associations

PIM associations connect PIM classes. They can have a name and multi-
ple association ends, which means that they can connect any number of
PIM classes, including 1 (self-reference). One association end is assigned to
each of the connected PIM classes and has lower and upper multiplicities.
Also, it has a role assigned, which is a textual description of the meaning of
the PIM association in context of the PIM class, which the association end
is assigned to.

3.1.5 XSEM PSM components

In this section, an overview of PSM components as defined by XSEM and
implemented by XCase is given. A PSM diagram is a visual representation of
an XML document structure. Because of this fact, its shape is a forest. Sim-
ply put, the user constructs the desired XML schema from the classes already
present in the PIM. This process guarantees that all the PSM components
have been derived properly from their conceptual counterparts, maintaining
this connection for further use. This includes potential changes, that can be
propagated to all affected components automatically. When a PSM diagram
is finished, it can be exported to some XML schema language. The visual-
izations are from XCase, which is described later in 3.1.6. A more detailed
description of the PSM components follows.

PSM Classes

Each PSM class in a PSM diagram must be derived from a PIM class. We
say that the PSM class represents this PIM class. A PSM class models how
instances of the represented PIM class are expressed in the modeled XML

20

Figure 3.2: PSM class

schema. The PSM class has a name and an element label as depicted in
Figure 3.2. If the PSM class name differs from the name of the represented
PIM class, the PIM class name is displayed as well. In this case, a PSM class
named Message1 representing a PIM class Message has an element label
InventoryMessage.

Root classes of a PSM diagram are created by deriving directly from a
PIM class in the PIM. Child PSM classes Ci

psm (to represent PIM classes
Ci

pim) are added under a parent PSM class Cpsm (representing a PIM class
Cpim). This is done by choosing a PIM paths in the PIM from Cpim to Ci

pim.
The child classes are called the content of a PSM class. PSM classes are
connected by PSM associations.

In XML documents, an instance of a PSM class is modeled as a sequence
of elements representing its content. If the PSM class has an element label,
this sequence is enclosed in an XML element with the name from the element
label. Otherwise, the content and the PSM attributes are included to a
parent of this PSM class, if there is any.

PSM Attributes

Each PSM class can have PSM attributes. These attributes can either be
derived from attributes of the represented PIM class, or they can be PIM-
less, indicating that they only exists in the XML schema and not on the
conceptual level. Also, a PSM attribute can have an alias - a name that it
should have in an XML document, which can be different from the name
of the represented attribute. Visualization of this situation is in Figure 3.3.
There is again the PSM class Message1 which has two PSM attributes, Time
and ID. Because the attributes have aliases ArrivalTime and MessageID
respectively, they will be present under those aliases in the resulting XML
schema. In XML documents, PSM attributes represent XML attributes of
XML elements.

Other PSM Constructs

There are other PSM constructs - attribute containers, content containers,
content choices, class unions and structural representatives, but they model
XML specifics, which have no semantic equivalent on the PIM level, and

21

Figure 3.3: PSM attributes

therefore they are not important to this thesis. For their detailed description
see [18].

3.1.6 XCase - Tool for XML Data Modeling

XCase3 is a tool for conceptual XML data modeling implementing the de-
scribed XSEM model. Since this was the first tool for conceptual modeling
of XML with XSEM, its main purpose was to examine possibilities of XSEM
as well as conceptual modeling for XML in general.

User work is organized into projects. Each project contains a PIM and
a number of PSM diagrams. XCase serves as a full-fledged UML editor. To
design PSM diagrams, UML metamodel was extended to support XSEM
constructs. An automatic translation of XML schemas from their represen-
tation as PSM diagrams into XML Schema language is also part of XCase.

Features

XML schema visualization XSEM model was designed to visualize
XML schemas. Working with the visual representation is easier than di-
rectly editing the XML Schema files. Moreover, being fully familiar with the
schema languages is not required.

Avoiding duplications when using the same PIM concepts in dif-
ferent schemas All PSM diagrams in the XCase project are bound to a
common PIM. The PIM components, their attributes and their relations are
defined only once in the PIM. When such a component is created, it can be
derived to a PSM diagram. A connection between the PIM component and
its PSM representation is created.

XML schema design independent from schema language Model-
ing XML schemas with PSM diagrams is not bound to any specific schema

3http://www.ksi.mff.cuni.cz/xcase

22

http://www.ksi.mff.cuni.cz/xcase

language. The current version of XCase allows users to translate the PSM di-
agrams to XML Schema, but export to other languages such as Relax NG
[7] would also be possible.

Consistency checking During the design process, the connections be-
tween the PIM components and their representations in the PSM diagrams
are maintained and can be used to check consistency, to locate usages of the
PIM components in the PSM diagrams or to propagate changes. A user can
alter both PIM and PSM diagrams at any time without worrying about a
loss of consistency.

XML schema evolution All the PIM and PSM diagram visualizations
in this thesis are modeled in XCase. Currently, it has no reverse engineering
support and only a basic set of evolution operations is implemented.

3.2 Logical levels

Now that the conceptual levels of the XML evolution architecture have been
presented, the logical levels will be described briefly. The propagation of
changes from the conceptual levels to the logical levels is not discussed in
this thesis.

3.2.1 Schema level

The schema level contains the actual XML schemas written in an XML
schema language. Those can be automatically generated from PSM diagrams
[18, p. 109-128] in the conceptual level. Specifically, they can be generated
every time the conceptual model evolves.

3.2.2 Operational level

XML can be used as means to exchange data, but it also can be used to
store the data in a database. When we have a database containing XML
data, we also use queries to access it. The queries are dependent on the
XML schemas describing the data, therefore, need to be changed when the
schemas change. The operational level makes it possible for the changes
made during the XML schema evolution process to be propagated further,
keeping the queries consistent.

23

3.2.3 Extensional level

This level contains the actual XML documents. When the XML schemas
evolve, the documents they describe may become invalid in the process. The
extensional level makes it possible for a change in the XML schemas to be
propagated (i.e. through an XSLT transformation) to the actual documents,
changing them to be compatible with the evolved XML schemas.

24

Chapter 4

Related work

Since creating a PSM diagram from an XML schema is quite straightfor-
ward [19], it can be assumed that we already have it and need to recreate
the connections to the PIM model, so we can perform evolution operations
(described in Chapter 6) using the XSEM approach (see Figure 3.1). The
PIM and the PSM diagram can be perceived as two schemas, each of a dif-
ferent type, and the restoration of connections between them as a kind of
a schema matching problem. There are some techniques already developed
for schema matching that can be used in a slightly modified form to help
with connecting PSM to PIM. In this chapter, existing approaches to schema
matching and some implementations using these techniques are presented.
The second part of this chapter contains a survey of existing XML schema
evolution implementations.

4.1 Existing approaches to schema matching

Usually in the process of schema matching, several different techniques are
combined to achieve better results. In this section there is a brief survey
of these techniques, based on [25]. Only element-level and structure-level
methods are listed, as only those are relevant for this thesis. For a more
complete list of schema matching methods, see [10, p. 73-116].

4.1.1 Element-level techniques

The first phase of most schema matching algorithms is based on finding a
similarity between elements of matched schemas while ignoring the structure
of the documents. Even though this approach seems to be oversimplified, it
provides a good first estimate because there is high probability, that the same
concepts in two different schemas will be described in a similar manner. The
resulting similarity coefficient is also a good starting point for other matching
techniques described later.

25

String-based techniques

String-based methods work all in a similar way. From two strings on the input
they produce a coefficient (usually a real number) measuring a similarity
between those strings. Lets consider two XML schemas. For each element
(e.g. complex type) of the first schema, a table is constructed, containing
coefficients measuring the similarity between its name and the name of each
complex type of the second schema. As simple as it sounds, it is not such
a trivial task to choose the best fitting technique by which the coefficients
are calculated. It often depends on the contents of the strings compared, or
even the language used. Of course, any strings related to the elements can
be used, if present (i.e. annotations, commentaries, etc.).

Prefix This technique tests whether the first string starts with the second
one. The advantage of this method is that it is able to recognize the similarity
between acronyms like int-integer, str-string etc. It can also consider the
length of the prefix.

Suffix This is the same as Prefix, only testing whether the first string ends
with the second one.

Example 4.1. It works well for pairs like phone-telephone.

Longest common substring Another method similar to Prefix and Suf-
fix, but more general, is computed as the length of the longest common
substring divided by the length of the longer string.

Example 4.2. The longest common substring similarity coefficient between
DeliveryAddress and Address is 7

15
= 0.47.

Longest common subsequence This method is even more general than
the Longest common substring. It is computed in the same way but this
time we can leave out any letters we want from the strings to achieve the
longest common substring.

Example 4.3. The longest common subsequence similarity coefficient be-
tween Msg and Message is 3

7
= 0.43, because we leave out ”e” and ”sa”

from ”Message”, which gives us ”Msge” and ”Msg” to be compared. Note
that this similarity would not be detected by any other of the previous meth-
ods.

26

Edit distance The edit distance method (a.k.a. Levenshtein Distance1)
counts the number of insertions, deletions and substitutions required to get
the second string from the first one. This number is then normalized by the
length of the longer string.

Example 4.4. The edit distance between Prg and Prague is 3
6

= 0.5.

N–gram An N-gram is a sequence of N characters. This technique counts
the number of common N-grams between the two strings.

Example 4.5. Trigram for the string color are col, olo and lor. The coef-
ficient between color and colour is 2

3
= 0.6.

Language-based techniques

While the string-based methods are independent from the language used,
the schemas are created by people and people tend to use a natural lan-
guage to describe the elements of the schemas. In fact, the whole concept of
XML is based on the possibility of creating custom tags to better describe
the meaning of an element. With this in mind, one cannot ignore that in
reality, the strings are very often words from some natural language. Given
that we have the knowledge of the language used, the following techniques
can greatly improve the accuracy of the resulting similarity coefficient when
applied in combination with the string-based techniques.

Tokenization Names of elements are parsed into sequences of tokens by
a tokenizer, which recognizes punctuation, cases, blank characters, etc.

Example 4.6. The string language-based techniques is tokenized into three
strings: language, based and techniques.

Lemmatization Lemmatization is used in combination with the above
described Tokenization. Tokens are morphologically analyzed and reduced
to their basic form.

Example 4.7. techniques → technique.

Elimination An additional technique further improving the accuracy of
language-based matching is called Elimination. Basically, the tokens from
Tokenization are searched for articles, conjunctions, prepositions or other
tokens which have no meaning in the context of matching. Those can be
ignored further in the process.

1http://en.wikipedia.org/wiki/Levenshtein_distance

27

http://en.wikipedia.org/wiki/Levenshtein_distance

Constraint-based techniques

These methods are based on comparing constraints applied to the definitions
of entities such as data types or cardinalities of attributes.

Data types comparison Two classes can be compared based on the data
types of their attributes as these can be compared objectively. This can be
done by comparing the sets of possible values or by considering an inheri-
tance hierarchy.

Example 4.8. The data type day is closer to the data type workday than
to the data type integer considering both criteria: According to the sets com-
parison, {1, 2, 3, 4, 5} is closer to {1, 2, 3, 4, 5, 6, 7} than to the set of
all integers. Using the inheritance criteria, given the inheritance hierarchy
integer → day → workday, the workday data type is again closer to the day
data type.

Multiplicity comparison Another method that can, of course, be used
together with the Data types comparison is multiplicity comparison. Many
data types are in fact lists or sets on which a cardinality constraint can be
applied.

Example 4.9. A combination of Data types comparison Multiplicity com-
parison can be illustrated by this example: A list of names of 1 to 3 adults
is closer to a list of names of 3 children than to a list of 5 to 10 company
names. This is given the correct inheritance hierarchy among children, adults
and people.

Linguistic resources

Linguistic resources include common knowledge and domain-specific the-
sauri. Considering names of schema entities as words of a natural language,
a relationship between two different words can be discovered (synonyms,
hyponyms, etc.). Again, combination with some language-based techniques
such as Lemmatization can help.

Common knowledge thesauri One of the used thesauri is WordNet
[15]. It is a large lexical database of English, in which groups of words with
similar meaning are together in a synset. The synsets are interconnected
according to conceptual-semantic and lexical relations. There are two types
of matchers exploiting common knowledge thesauri. The first ones use the
semantic relations of words (synonyms, hyponyms) and the other ones use
the lexical hierarchy. Specifically, they measure the number of arcs traversed
between the two words in this hierarchy.

28

Domain-specific thesauri These thesauri contain knowledge that is not
available in the common knowledge thesauri. An example of this can be
proper names or technical terms. Example: A record like ”NKN:Nikon =
syn” can tell the matcher that an entity name NKN is a synonym for an
entity name Nikon.

4.1.2 Structure-level techniques

For this thesis, only graph-based techniques are considered. For more tech-
niques see [25]. Graph–based techniques are methods that view the matched
schemas as labeled graphs. The entities are compared based on the analysis
of their positions in their respective graphs. The idea behind this approach is
that if the two entities from the two graphs are similar, their neighbors should
be somehow similar too. As always, there are some different approaches.

Graph matching This approach is based on graph matching, which has
a deep theoretical background in graph theory. It is a combinatorial problem
that can be computationally expensive, hence it is usually solved by approx-
imate methods. In the case of schema matching, the method is to minimize
the dissimilarity between the two schemas, which is an optimization prob-
lem.

Children This method is based on the following statement: two non–leaf
schema elements are structurally similar if their immediate children sets are
highly similar2. However, this method is not always ideal. An example of
that can be Figure 4.1. The Children approach would work only if both
schemas had the same structure for both billing and shipping addresses. In
this case, it will fail. Clearly, the concept of shipping and billing addresses
can be represented differently in different companies, but the meaning is
the same and the schema matcher should align these entities correctly. To
address this issue, the next approach can be used.

Leaves Instead of focusing on immediate children of an entity, this ap-
proach uses their leaf sets. It is based on the following statement: two non–
leaf schema elements are structurally similar if their leaf sets are highly
similar, even if their immediate children are not. This will work even with
the example in Figure 4.1, because the structure between the entity and the
leaf set does not matter.

2Highly similar means that their similarity exceeds a given threshold.

29

(a) PurchaseOrder 1 (XML Schema A.1) (b) PurchaseOrder 2 (XML Schema A.2)

Figure 4.1: Two different representations of PurchaseOrder

4.1.3 Cupid

Cupid [13] is a generic schema matcher. It combines several matching tech-
niques described in 4.1 and was a great inspiration for the approach pre-
sented in this thesis, mainly because of its usage of element and structure-
level schema matching techniques. On the input, there are two schemas. For
simplicity, let them be two trees. The goal of the matching algorithm is to
get a weighted similarity coefficient for each pair of elements from the first
schema and from the second schema. This coefficient is a combination of two
other coefficients described in the following paragraphs.

Linguistic similarity As a first step, Cupid calculates a linguistic simi-
larity coefficient lsim for each pair of elements from their respective schemas.
For this task it utilizes techniques such as Tokenization. It also utilizes the-
sauri for elimination and expansion of acronyms and abbreviations. The last,
but the most interesting technique is tagging. Cupid uses the thesaurus to
tag schema elements with a concept name. For example, schema elements
that contain Cost, Value and Price tokens are all tagged by Money concept.
These tags are then used to categorize the schema elements. This reduces the
number of element-to-element comparisons, as only elements from compati-
ble categories are compared. Two categories are compatible, if their respec-
tive sets of keywords are similar. The similarity of tokens and the similarity
of categories is then combined to form the linguistic similarity coefficient.

Structural similarity The next step is the structural similarity. It is
based on comparison of the elements, their neighborhoods and their leaf sets.

30

Specifically, the structural similarity coefficient ssim is computed for each
pair of elements (from their respective schemas). First of all, the coefficient
is initialized for leaves as a coefficient of their data types compatibility. For
non-leaf elements, it is computed as a number of strong links between their
leaf sets. A leaf in one schema has a strong link to a leaf in the other schema,
if their weighted coefficient exceeds a given threshold. In addition, there are
two thresholds, high and low. If the weighted similarity exceeds the high
threshold, the structural similarity of each pair of leaves in the two subtrees
is increased by a constant cinc. On the other hand, if the weighted similar-
ity drops below the low threshold, the structural similarity is decreased by
another constant cdec. This is because the presence of highly similar ances-
tors should reinforce the structural similarity of the leaves. The linguistic
similarity remains unchanged.

For the description to be complete, the formula for the weighted similarity
coefficient is wsim = wstruct× ssim+ (1−wstruct)× lsim, where wstruct is a
constant from (0, 1) indicating the weight of ssim.

With the similarity coefficients computed, a mapping generator can pro-
duce the mappings. If a mapping of non-leaf elements is required, their sim-
ilarity coefficients have to be recomputed. This is because in the process,
the leaf coefficients could be changed after the coefficients of ancestors are
computed (by the threshold criteria adjustment).

In comparison with other matching systems (MOMIS [3] and DIKE [21]),
Cupid matches more terms correctly, mainly due to the use of a thesaurus.
The whole comparison is in Section 9 of [13].

4.1.4 Nečaský

This article [19] offers a complex approach to the process of reverse engi-
neering of XML schemas to PSM diagrams. Because of this, the process of
creating a PSM diagram from an XML schema is not covered by this the-
sis. It is described there in sufficient detail and is quite trivial, so we can
assume that we already have the PSM diagram and all that is missing is the
mapping. The article also contains a semi-automatic algorithm for the re-
construction of PIM-PSM mappings, but it has some severe drawbacks. The
most problematic one is the computational cost which is up to mn, where
m is a maximum number of outgoing PIM associations from one PIM class
and n is the number of PIM classes in the model. Therefore in practice, the
algorithm will not work if the PIM diagram contains a bigger number of
associations.

Definition 4.1. A PIM path P is an expression C1 —. . . — Cn where
C1, . . . , Cn are PIM classes and for each 1 ≤ i < n, there is a PIM as-

31

sociation connecting Ci with Ci+1. If there are two or more associations
connecting Ci and Ci+1, we need to distinguish the required association by
its name l and write (l, Ci+1) instead of Ci+1. We say that P goes from C1

to Cn. Cn is called terminal class of P .

Figure 4.2: PIM that would cause trouble

Figure 4.2 shows an example of a PIM diagram that is simple enough
and can cause trouble to this approach. Basically, it has 6 classes connected
among each other by 4 associations, which can model that 6 entities have
4 different relations, but each one with each other. Given some restrictions
like that a PIM path cannot go trough one PIM class more that once, this
still gives us a total number of PIM paths between two classes in a diagram,
where all n classes are connected with each other by m associations

n∑
i=1

mi (n− 1)!

(n− i)!
(4.1)

In our case, the number would be 631 124 PIM paths between two classes,
which is too much to cover for a relatively uncomplicated, six class diagram.

The algorithm

For each PSM class Cpsm, starting with roots of a PSM diagram and de-
scending to leaves recursively, it works like this:

Class mapping estimation performs string and structural similarity
measurement (see 4.1) of Cpsm and all PIM classes of the model.

(1) The string similarity measurement uses a maximum of two similar-
ities. The first one is a similarity between a PIM class name and the Cpsm

32

name, the second one is a similarity between the PIM class name and the ele-
ment label of Cpsm. The specific algorithm used is longest common substring
(see Example 4.2), although any one of the algorithms for string similarity
in 4.1.1 can be used simply by changing a single procedure. This coefficient
is called initial similarity.

(2) The next step is a measurement of similarity of attributes. This is
done again by using string similarity of attribute names. This time, for each
attribute Attrpsm of Cpsm, a 2-dimensional attribute similarity matrix is com-
puted. One dimension is represented by all PIM attributes of all PIM classes
in the model. The second dimension contains all PIM paths connecting C,
the PIM class from which Cpsm is derived, and C ′, the PIM class containing
the PIM attribute in question. For example, an element xi,j of this ma-
trix contains a similarity coefficient computed as the similarity of names of
Attrpsm and PIM attribute i multiplied by a weight of the PIM path j. The
weight of a PIM path is a similarity of labels of associations along the path
with the element label of Cpsm. In addition, it decreases as the length of the
PIM path increases. For each attribute, the best coefficient from the matrix
is added to the attribute similarity of Cpsm and C.

(3) The final step is a measurement of similarity of the children of Cpsm.
This is done in a manner similar to how the similarity of attributes was
measured. We have a 2-dimensional child similarity matrix, one dimension
is represented by all PIM classes in the model, the second dimension contains
all the PIM paths connecting Cpsm and the PIM class in question. An element
yi,j of this matrix contains a coefficient computed as the similarity of name
and element label of Cpsm and the name of PIM class i, multiplied by a
weight of the PIM path j. Again, the best coefficient of each child’s matrix
is added to the child similarity of Cpsm and C.

An average of the three similarities from steps described above is used
as a similarity coefficient of Cpsm and the PIM classes.

Class mapping specification is performed by a domain expert who is
offered a list of suggested PIM classes for the mapping of each Cpsm, ordered
by the similarity coefficient.

Association mapping is a process, in which for the PSM association
going to Cpsm (if Cpsm is not a root), the domain expert is offered a list of all
possible PIM paths from C ′ to C (the PIM classes to which C ′

psm - a parent
of Cpsm, and Cpsm are mapped respectively) ordered by their weight. The
selected PIM path then represents the semantics of the PSM association.

Subtree mapping is as process of mapping the attributes of Cpsm to
their counterparts in the PIM. This is done by the domain expert with

33

the help of the attribute similarity matrix, which was computed during the
class mapping estimation. Then, the algorithm continues recursively to the
children of Cpsm.

Comments

As already demonstrated in the beginning of the description of this ap-
proach, processing all PIM paths between two PIM classes can be costly.
The algorithm uses this for each PIM attribute of the model in step (2) and
for each PIM class in step (3) of the class mapping estimation. Then, this
approach is applied for each PSM class in the PSM diagram. It is obvious
that this algorithm presents maximum comfort for the domain expert, as it
compares all the possibilities, but the cost is too high as this algorithm will
work only for very simple models. In Chapter 5, an approach is presented,
offering less comfort for the domain expert, however, it will work for bigger
models, as its computational cost is significantly lower.

4.2 Existing approaches to XML schema evo-

lution

A lot of work has been done in the area of XML schema evolution. In this
chapter, we provide a description of two representatives from the area.

4.2.1 E. Domı́nguez et al.

In the paper ”Evolving XML Schemas and Documents Using UML Class
Diagrams” [9], a method of creating and evolving XML schemas and docu-
ments using a platform-independent UML class diagram model is presented.
The whole architecture consists of several components. The conceptual com-
ponent captures the platform–independent reality using the UML class di-
agrams. The logical component captures the tool-independent knowledge
describing the data structures in an abstract way. In the case of XML, it
represents the XML schemas. Then there is the extensional component,
which captures the tool–dependent knowledge, i.e. it contains textual rep-
resentation of the schema using the XML Schema language. Finally, there
is a translation component, which contains the mapping of the conceptual
components to the logical ones.

Also in this paper, there is a translation algorithm described that has the
UML class diagram (from the conceptual component) on the input, and cre-
ates corresponding elements within the logical component, the extensional
XML schema, and a set of translation rules in a new, intermediate compo-
nent. Every change done to the UML class diagram also affects this set of

34

rules in the intermediate component. This triggers an update to the logi-
cal component. The change in the logical component causes an update to
the extensional component, which generates XSLT stylesheets, which mod-
ify the textual representation of the XML schema and the XML documents
to conform to the new schema.

A drawback of this method is its limit to only one XML schema. It is
not possible to propagate those changes to another schema, which could be
connected through the platform–independent level. Another disadvantage is
the lack of support for other XML schema languages.

4.2.2 Meike Klettke: Conceptual XML Schema Evo-
lution

In this paper [11], a conceptual XML schema evolution approach is intro-
duced. In the process described, the XML schema is normalized to the vene-
tian blind design style. The next step is the import of the schema into the
CoDEX (Conceptual Design and Evolution of X ML schemas) tool. The
CoDEX tool visualizes the schema in a way very similar to the XSEM’s
PSM diagram. A user can change the visualization using some basic oper-
ations such as add, delete, change, move or rename. These operations are
logged, forming a sequence of evolution steps. This sequence is then analyzed,
simplified (sequences like ”new element (x), rename (x) to (y)” are substi-
tuted by ”new element (y)” etc.), and finally translated into a language for
XML schema updates. These updates are then applied to the XML schema.

The main disadvantage of this approach is the fact that it again con-
siders only one XML schema. It has no connections to some platform-
independent conceptual model that would enable the change to propagate to
other XML schemas. In the 5-level hierarchy (Figure 3.1), its place is from
the PSM level downward. It is also limited to the XML Schema language
only.

35

Chapter 5

Mapping creation

This section contains the suggested semi-automatic algorithm for recreation
of the mappings between PSM components (classes, attributes and associa-
tions) and the PIM. It helps the domain expert by offering the possibilities
of mappings according to their likelihood of being correct. The main feature
of this approach in contrast with the one presented in [19] and evaluated in
4.1.4 is its relatively low computational cost and therefore the ability of pro-
cessing larger models. In the context of this thesis, this algorithm is used for
the recreation of the mappings between a PSM diagram and a PIM, where
the PSM diagram is obtained easily from an XML schema and the PIM is
a conceptual model that already exists. When these mappings are in place,
various evolution operations can be performed propagating the changes to
all affected components in the PIM and the PSM diagrams.

Algorithm 1 Overall view of the algorithm

1: Compute initial attribute similarities (Algorithm 2)
2: Compute initial class similarities (Algorithm 3)
3: Map PSM classes to PIM classes (Algorithm 4)
4: Map PSM attributes to PIM attributes (Algorithm 5)
5: Map PSM associations and refine PIM paths (see 5.1.5)

5.1 Algorithm description

The algorithm described is semi-automatic and its simplest form can be
seen in Algorithm 1. It has a PSM diagram and a PIM on the input. First of
all, it performs some initial measurements of attribute and class similarities
(lines 1 and 2) and then asks the user for a mapping of each PSM class

36

of the PSM diagram (line 3). The reason this is called an algorithm1 is
that the PIM classes offered to the user for mapping are sorted according
to their similarity with the current PSM class. It is even possible to accept
some offered mappings automatically, if the similarity is greater than a given
threshold (see 5.1.3). This significantly eases the process of creation of the
mappings. The next step is the mapping of attributes (line 4). The user
specifies the mapping of each PSM attribute to a PIM attribute. Again, the
choices are sorted by the likelihood that these attributes match. Finally, the
algorithm does not guarantee a correct mapping of PIM paths. These need
to be adjusted manually, but in 5.2, there is a suggested way to ease the
process. This is what is happening on line 5.

Example 5.1. As an example, we will use a modified version of the PSM di-
agram of Message 4 from the initial example. It has slightly modified strings
for illustration of the string similarity algorithms. It can be seen in Fig-
ure 5.1(a). Our goal will be to map it to the PIM diagram in Figure 5.1(b).

(a) PSM diagram for examples (b) PIM diagram for examples

Figure 5.1: Diagrams for examples

It is the same PIM as in Figure 1.4 and it is placed here for the convenience
of the reader.

5.1.1 Attribute similarity

This task is divided into two, as attributes can be compared according to
their types (including cardinality) and names. A measurement of similarity
is needed for every PSM attribute from the PSM diagram processed and

1Some may say that if the user has to map the classes manually, what is the point in
calling it an algorithm.

37

every PIM attribute from the model. The reason for this is described later
in 5.1.4. This measurement is done by Algorithm 2.

Algorithm 2 Attributes similarity measurement

1: for all PSM attributes Ai
psm from the PSM diagram do

2: for all PIM attributes Aj
pim from the PIM do

3: ST
A(i, j) = T (type(Ai

psm), type(Aj
pim))

4: SN
A (i, j) = StringSimilarity(Ai

psm, A
j
pim)

5: SA(i, j) = w ∗ ST
A(i, j) + (1− w) ∗ SN

A (i, j)
6: end for
7: end for

Type similarity

For this step, a 2-dimensional attribute type similarity matrix ST
A is com-

puted. One dimension represents all PSM attributes from the processed
PSM diagram, the second one represents all PIM attributes in the model.
The coefficient ST

A(i, j) represents the type similarity of the PSM attribute
Ai

psm and PIM attribute Aj
pim, which is determined using a data type compar-

ison table T . This step is on line 3 of Algorithm 2. T can look like Table 5.1,
only probably more complex as usually more data types are present in the
system.

string integer date time

string 1 0.2 0.5 0.5
integer 0.2 1 0.1 0.1
date 0.5 0.1 1 0.7
time 0.5 0.1 0.7 1

Table 5.1: Example of a type comparison table

This table can be customized and extended with user-defined types. The
specific coefficients depend on the implementation and on the user settings.
At the end of this step, each pair (consisting of a PIM attribute and a
PSM attribute) has a type similarity coefficient.

String similarity

The second part of the attribute similarity computation is based on string
similarity. Again, there is a 2-dimensional matrix, this time called the at-
tribute name similarity matrix SN

A . The coefficients SN
A (i, j) are again com-

puted for each pair of PIM and PSM attributes (see line 4 of Algorithm 2).

38

The specific method used in function StringSimilarity can vary. It can be
any combination of string-based and language-based techniques, including
linguistic resources described in 4.1.1. The choice is up to the implementa-
tion. Ideally, the user could choose which algorithm(s) to use, according to
the format of attribute names used. This is because no string comparison
method is universally functional and the choice of an appropriate method
(and/or thesauri) can significantly improve the results.

Now, there are two matrices comparing the attributes. For further use,
they can be combined into one attribute similarity matrix SA, where each
coefficient SA(i, j) is computed as a weighted sum of the two corresponding
coefficients ST

A(i, j) and SN
A (i, j) from the previous matrices as can be seen

on line 5 of Algorithm 2, where the weight w is between 0 and 1.

Example 5.2. We will use the Longest common subsequence as a string
similarity method (see Example 4.3 in Section 4.1.1). In addition, the com-
parison will not be case sensitive. The computed attribute similarities for the
PSM attribute num of the PSM class Reservation and some of the PIM at-
tributes are in Table 5.2. This is how the computation works for example for
the PIM attribute number of the PIM class Reservation (see Algorithm 2):
ST

A = 1 (line 3) because both attributes are integers, SN
A = 3

6
= 0.5 (line 4).

Let the weight w = 0.5 meaning half of the resulting similarity will be ST
A

and half will be SN
A . The result (line 5) is SA = w ∗ ST

A + (1 − w) ∗ SN
A =

0.5 ∗ 1 + 0.5 ∗ 0.5 = 0.75.

Number Name ID Time City Country CreditCardNo

ST
A 1 0.2 1 0.1 0.2 0.2 0.08
SN

A 0.5 0.5 0 0.25 0 0.14 0.2

SA 0.75 0.35 0.5 0.18 0.1 0.17 0.14

Table 5.2: Attribute similarities of num

5.1.2 PIM and PSM class similarity

As above with attributes, one needs to be able to compare any pair of
PSM class Ci

psm from the processed PSM diagram and PIM class Cj
pim

from the PIM. Again, there will be several similarity matrices which will
be combined to the final class similarity matrix SC , but the details are dif-
ferent. Classes can be compared based on their names, the element label of a
PSM class, their attributes and finally, based on their neighborhood (5.1.3).
This is what Algorithm 3 does.

39

Algorithm 3 PIM and PSM classes similarity measurement

1: for all PSM classes Ci
psm from the PSM diagram do

2: for all PIM classes Cj
pim from the PIM do

3: SSN
C (i, j) = StringSimilarity(name(Ci

psm), name(Cj
pim))

4: SSE
C (i, j) = StringSimilarity(elementLabel(Ci

psm), name(Cj
pim))

5: SN
C (i, j) = max(SSN

C (i, j), SSE
C (i, j))

6: SA
C (i, j) = ClassAttributeSimilarity(Ci

psm, C
j
pim) {Equation 5.1}

7: SC(i, j) = w ∗ SN
C (i, j) + (1− w) ∗ SA

C (i, j)
8: end for
9: end for

String similarity

The string similarity of classes is computed in the same way as in [19]. The
coefficient is a maximum of two. One is a similarity of a name of Ci

psm and

a name of Cj
pim (line 3). The second one is a similarity of an element label

of Ci
psm and the name of Cj

pim (line 4). After this step, each pair of PSM
and PIM classes have their string similarity coefficient SN

C (i, j) stored in the
class name similarity matrix SN

C (line 5).

Attribute similarity

Here comes the part where the attribute similarity matrix SA is used. Classes
have attributes and the attributes are already compared. All that needs to
be done is to combine the similarity coefficients of the attributes of Ci

psm to

the ones of Cj
pim as can be seen on line 6 of Algorithm 3. There are various

possibilities of how to combine them. Each PSM attribute of the PSM class
has a similarity coefficient for every PIM attribute of the PIM class in ques-
tion. It makes sense to only consider the maximum of these coefficients for
every PSM attribute. And then these coefficients can be summed or multi-
plied to get the final result, which is placed to the class attributes similarity
matrix SA

C .

Figure 5.2: Example for combining attribute similarity coefficients

The difference between summing and multiplying is best shown on an

40

example. Let us have a PIMClass and a PSMClass like in Figure 5.2. Clearly,
the pair of Address attributes will have a high similarity coefficient (e.g. 1),
when the other pairs (Address - Date, Address - PhoneNumber and Date -
PhoneNumber) will have a low similarity coefficient (e.g. 0.1). Now, what
happens if the results are summed? The final similarity will be 1.1, and
the semantics of that are that the classes have a high attribute similarity,
because one pair of attributes is highly similar. On the other hand, when the
coefficients are multiplied, the result will be 0.1, meaning that these classes
have low attribute similarity, because one of the attributes of the PSM class
has no similarity to any of the PIM attributes of the PIM class. Obviously,
the choice is up to the implementation or, ideally, up to the user. Another
way can be that when the similarity of one attribute is higher than a certain
threshold, the pair of classes scores a point. As said before, there are many
possibilities.

Let ACi,k
psm be the k-th PSM attribute of Ci

psm and let n be a number
of PSM attributes of Ci

psm. Then the class attribute similarity (CAS) from
line 6 of Algorithm 3 is:

CAS (Ci
psm, C

j
pim) =

n∑
k=1

MAS (ACi,k
psm , C

j
pim) (5.1)

Let Apsm be a PSM attribute, Cpim a PIM class, Ai
pim i-th PIM attribute

of Cpim and n a number of PIM attributes of Cpim. Then maximum of at-
tribute similarities (MAS) is:

MAS (Apsm, Cpim) = max(SA(Apsm, A
1
pim), . . . , SA(Apsm, A

n
pim)) (5.2)

where SA(Apsm, A
l
pim) means the attribute similarity coefficient of Apsm

and Al
pim.

Similarity matrix

Finally, a combination of the coefficients from the two matrices described
above (the class name similarity matrix SN

C and the class attributes simi-
larity matrix SA

C) is stored in the class similarity matrix SC . The way the
coefficients are combined can again be a sum or multiplication or something
else. In this case, it could be useful to have a variable w (set by the user) say-
ing how much weight is given to the name similarity and how much weight is
given to the attribute similarity. The combination formula could then look
like on line 7 of Algorithm 3:

SC(i, j) = w ∗ SN
C (i, j) + (1− w) ∗ SA

C (i, j) (5.3)

41

Example 5.3. As an example of the PIM and PSM class similarity com-
putation, we will compute the class similarity for the PSM class Message
(Cpsm) and the PIM class Message as in Algorithm 3. First of all, we will
compute the string similarity between the names of the classes (line 3). In
this case, it is clearly SSN

C = 7
7

= 1. Next, the similarity between the name
of the PIM class and the element label of Cpsm (line 4) is SSE

C = 3
7

= 0.43.
The maximum of these two (line 5) is SN

C = 1.
Now the attribute similarity CAS (line 6) will be computed. We will start

according to Equation 5.1 with PSM attribute ArrivalTime and compute
the maximum of attribute similarities (MAS) as described in Equation 5.2.
SA(ArrivalTime,Time) = 0.68, SA(ArrivalTime, ID) = 0.06.

Therefore MAS (ArrivalTime,Message) = 0.68. The same computation
is done for the PSM attribute MsgID and MAS (MsgID ,Message) = 0.7.
From this, the CAS SA

C (Cpsm,Message) = 1.38.
Finally, let the weight w = 0.5. What is left to do is to combine the name

and attribute similarities of the classes as on line 7. SC(Cpsm,Message) =
w ∗SN

C (Cpsm,Message)+(1−w)∗SA
C (Cpsm,Message) = 0.5∗1+0.5∗1.38 =

1.19.
All the similarities for Cpsm are in Table 5.3.

Item List Message Order Reserv. Customer Address

SSN
C 0.14 0.14 1 0.14 0.27 0.25 0.43
SSE

C 0.25 0.25 0.43 0 0.09 0.13 0.14
SN

C 0.25 0.25 1 0.14 0.27 0.25 0.43
SA

C 0.8 0 1.38 0.8 0.72 0.59 0.54

SC 0.53 0.13 1.19 0.47 0.5 0.42 0.49

Table 5.3: Class similarities of Message

5.1.3 Structural similarity and class mapping

Now that the initial similarities are computed, it is time to start the map-
ping process (Algorithm 4). In these following paragraphs, let Cpsm be the
current PSM class during the traversal of the PSM diagram tree and Cpim

the PIM class to which Cpsm is or is to be mapped to.
In contrast with the algorithm from [19], which chooses the top-down

approach, this algorithm is bottom-up. To be exact, it uses a post-order
traversal of the PSM tree. The advantage is that whenever the algorithm
is in an inner node Cpsm, all the children of Cpsm are already mapped, and
therefore it is possible to increase or decrease the class similarity by a certain
factor considering the distance of Cpim to the PIM classes to which the
children of Cpsm are mapped.

42

The intuition that shorter PIM paths are better than longer PIM paths
is a little bit problematic. The PIM paths used to describe the semantics
of a PSM association can all be very long and in that case, the adjustment
would not work very well. On the other hand, most of the PIM paths in
realistic situations are in fact shorter than longer.

Algorithm 4 Class mapping algorithm

1: for all roots of the PSM diagram do
2: for all PSM classes Cpsm in the post-order traversal of the PSM tree

do
3: if Cpsm is a leaf then
4: Sort the PIM classes according to SC

5: Offer them to the user as mappings for Cpsm

6: else
7: Compute the structural similarity adjustment
8: Sort the PIM classes according to SC and the adjustment
9: Offer them to the user as mappings for Cpsm

10: end if
11: end for
12: end for

Leaves

As said before, the algorithm actually starts in the root. But because it
traverses the tree using the post-order approach, it is in fact bottom-up.
The first time the user is asked to provide a mapping is for the first leaf.
The order of the offered PIM classes to map the leaf to is based solely on the
class similarity matrix SC , specifically the row corresponding to Cpsm (the
leaf), starting from the most similar classes and going to the least similar
ones. This part starts on line 3 of Algorithm 4.

Inner nodes

When the algorithm reaches an inner PSM class Cpsm, all of the children of
Cpsm are already mapped. As described before, an adjustment to the initial
class similarity (in SC) can be made to account for the structural similarities.

Let D1
psm, . . . , D

n
psm be the children of Cpsm. Let D1

pim, . . . , D
n
pim be the

PIM classes to which the children are mapped to respectively. The intu-
ition behind the structural similarity adjustment is that the PIM class Cpim

should be as close as possible to D1
pim, . . . , D

n
pim in the PIM. Therefore, we

measure the distance between each PIM class Cj
pim from the model and each

one of D1
pim, . . . , D

n
pim. Dijkstra’s algorithm can be used to find the short-

est paths to every Cj
pim from every one of D1

pim, . . . , D
n
pim. The results are

43

stored in an array, representing the final distance Dj between Cj
pim and all

of D1
pim, . . . , D

n
pim. That final distance is computed for each Cj

pim as a sum of
distances di from each of D1

pim, . . . , D
n
pim, averaged by n, the number of chil-

dren of Cpsm. The final distance Dj of a PIM class Cj
pim from D1

pim, . . . , D
n
pim

is:

Dj =
n∑

i=1

di

n
(5.4)

Now that the distances are computed, a similarity adjustment Sj
adj can be

added to each Cj
pim depending on how close to D1

pim, . . . , D
n
pim the class

is. The exact nature of this adjustment can again be set by the user, who
can express his preference of the structural similarity over the string and
attribute similarities by setting a higher weight for the distance coefficient.
This is what is happening on lines 7-9 of Algorithm 4.

Example 5.4. As an example of structural similarity and class mapping,
we will describe the moment Algorithm 4 reaches the PSM class Message
(Cpsm), which is on lines 7-9.

Structural similarity adjustment In this case, the adjustment will be
computed as Sj

adj = 1
Dj

where Dj is the final distance of a PIM class Cj
pim

from D1
pim, . . . , D

n
pim as in Equation 5.4. We assume that the children of Cpsm

(Customer and Reservation) are mapped to their respective counterparts in
the PIM. Let Cpim be the PIM class Message. Its distance from Customer is
2 and from Reservation it is 1. Therefore, Dj = 2

2
+ 1

2
= 3

2
and the structural

similarity adjustment is Sj
adj = 1

Dj
= 2

3
= 0.67.

Message Order Reserv. Address Customer Item List

SC 1.19 0.47 0.5 0.49 0.42 0.53 0.13
Sadj 0.67 1 0.5 0.5 0.5 0.33 0.5

c 1.86 1.47 1 0.99 0.92 0.86 0.63

Table 5.4: Similarities when mapping Message

Class mapping With the structural similarity adjustments calculated for
each PIM class, we will simply add them to the similarity coefficients already
calculated in SC. Any method of combining the coefficients can be chosen
here. Addition is used for its simplicity. Table 5.4 contains the original SC

coefficients, similarity adjustments and final resulting coefficients c, by which
the list offered to the user as well as the table are sorted. The user now
chooses the right PIM class to which Cpsm will be mapped to.

44

Thresholds

As a step toward automation, suggestions can be automatically accepted
or rejected according to the similarity coefficient. We can introduce a low
threshold thlow. PIM classes with similarity lower than thlow do not need to
be offered at all, or only on demand. Similarly, there can be a high threshold
thhigh for the case that there is only one PIM class with the similarity greater
than thhigh. In that case, this PIM class could be accepted automatically
without asking the user. The specific threshold values should be variable and
to be used by advanced users. Note that if the thresholds are present, class
attribute similarity needs to be normalized. The way it is in Equation 5.1, it
produces results dependent on the number of PSM attributes and therefore
a universal threshold cannot be defined.

5.1.4 Attribute mapping

The last thing left to do is the mapping of PSM attributes to their PIM coun-
terparts. There are some options of what to do with a PSM attribute Apsm of
a PSM class Cpsm, which is now mapped to a PIM class Cpim. The attribute
mapping algorithm is Algorithm 5.

Algorithm 5 Attribute mapping algorithm

1: for all PSM attributes Apsm do
2: Add bonus B for the PIM attributes of Cpim

3: Sort the PIM attributes according to SA +B
4: Offer them to the user as mappings for Apsm

5: end for

(1) The simplest option is to map Apsm to a corresponding PIM attribute
Apim of Cpim. The method of offering a list of possibilities sorted by the
similarity between Apsm and the PIM attributes of Cpim is very similar to
the one used for classes. The list is displayed in descending order of simi-
larity. Again, there can be thresholds for auto-accepting and ignoring the
suggestions.

(2) The most complicated option is to map the PSM attribute Apsm to a
PIM attribute A′

pim of any PIM class C ′
pim that is connected by a PIM path

to Cpim. This may be needed in a case of an XML schema created from a
PIM and PSM like in Figure 5.3, which can look like this:

<xs:complexType name="Customer">

<xs:attribute name="Name" type="xs:string"/>

<xs:attribute name="Street" type="xs:string"/>

45

<xs:attribute name="City" type="xs:string"/>

<xs:attribute name="Country" type="xs:string"/>

</xs:complexType>

(a) PIM diagram (b) PSM diagram

Figure 5.3: Example for attribute similarity

This is because when a PSM class does not have an element label (like
Address in Figure 5.3(b)), it does not form a subelement. Its attributes are
inserted into the parent class (Customer) instead. This situation may not
be detected by the algorithm that reverse engineers the XML schema to a
PSM diagram. Therefore, a PSM attribute Apsm can appear in a PSM class
Cpsm to which it does not belong in the context of the PIM. Because the
situation number 1 is more common, an appropriate bonus B to the similar-
ity coefficient of the PIM attributes of Cpim is added (line 2), so that these
attributes appear before all the others when the list is offered to the user
(line 4).

When the user maps the Apsm to a PIM class other than Cpim, it can be
solved by creating a new PSM class C ′

psm representing the PIM class C ′
pim

containing the PIM attribute Apim, to which Apsm is mapped. Apsm can
then be moved to C ′

psm and C ′
psm can be added as a child of Cpsm. This way,

the problem is transformed to the situation number 1. Of course, when more
than one PSM attribute does not belong to its PSM class Cpsm, this approach
would generate a new PSM class C ′

psm for each one of the attributes, so a
detection of this situation should be considered while implementing this
approach. It is not hard as it only requires detecting whether there already
is a PSM class C ′

psm among the children of Cpsm representing C ′
pim containing

Apim, to which Apsm is mapped. If there is such a class, Apsm can be moved
to that class instead of creating a new one. This is what happens on line 4
of Algorithm 5.

46

(3) There is yet another option, which is further described in 5.3.2.

Example 5.5. We will describe the process of mapping the PSM attribute
MsgID of the PSM class Message to its PIM counterpart as in Algorithm 5.
Table 5.5 contains the similarity coefficients from SA

2, eventual bonuses
B = 0.5 for being an attribute of Cpim (line 2) and the final coefficients
c, according to which the list is sorted (line 3) before it is offered to the user
(line 4). In this example, the bonus B is simply added to the coefficient from
SA.

Message:ID Order:ID Item:ID Time Number Name

SA 0.7 0.7 0.7 0.15 0.59 0.2
B 0.5 0 0 0.5 0 0
c 1.2 0.7 0.7 0.65 0.59 0.2

Table 5.5: Some similarities of PSM attribute MsgID

5.1.5 PSM associations

The mapping of the PSM associations is simple. When a non-leaf PSM class
Cpsm is mapped to Cpim, the PSM associations leading to its children Dj

psm

mapped to Dj
pim are mapped to represent the shortest PIM paths from Cpim

to Dj
pim respectively. This mapping may be inaccurate and because of that,

an approach to fixing these is suggested in 5.2.

5.2 Methods for refining PIM paths

One of the problems of the algorithm described above is that the mapping
of PSM associations is the shortest PIM path between the PIM classes rep-
resented by the PSM parent and PSM child classes. This mapping may be
semantically wrong, even if the resulting XML schema is the same. In that
case the domain expert has to check the PSM associations and their map-
pings and fix it according to the right semantics the PSM associations are
supposed to represent. In this section, there is a proposal of how a tool for
fixing the PIM paths could look like. We will demonstrate it on an example.

Let us have a PIM diagram like the one in Figure 5.4. There is a Supplier
who offers Parts, which can be supplied by multiple suppliers. Multiple parts
together can make a Supply. The Supplier can also supply the whole Supply.
Now, let us have a PSM diagram like the one in Figure 5.5. The PSM asso-

2The PSM attributes of the PSM class Address are missing because their similarities
are low and therefore they are not important for the example.

47

Figure 5.4: Sample PIM diagram

Figure 5.5: Sample PSM diagram

ciation in that diagram can either represent the PIM association Supplier-
Supply or the PIM path Supplier-Part-Supply. The algorithm chooses the
shortest path, which is Supplier-Supply. Now, if the domain expert decides
that the shortest path is wrong, there are several approaches to how to ease
the process of fixing the PIM path. We will explain two possible approaches
in the following subsections. Note that the approaches presented here are
applicable to any situation where the PIM path needs to be altered, not
only at the end of the algorithm described earlier.

5.2.1 Refusing associations

One of the possibilities is to show the user the current PIM path in a graph-
ical way. The user can then refuse single PIM associations from which the
PIM path is composed of. When a PIM association is refused, it is automati-
cally replaced by the next shortest PIM path connecting the two PIM classes.
This approach can be particularly useful when dealing with more complex
PIM paths as it does not require the domain expert to specify the whole

48

(a) Refusal of association (b) Next shortest PIM path

Figure 5.6: Sample of refusing associations method

PIM path from scratch. There can be a situation when there are two or
more PIM paths of the same length. In that case, the next method (5.2.2)
can be used to choose from the possibilities, or the algorithm can offer them
in some arbitrary order. An example of this approach applied to the sample
PIM diagram in Figure 5.4 is in Figure 5.6.

5.2.2 Manual PIM path selection

Another method more suitable for shorter PIM paths is to let the domain
expert go through a tree of PIM associations from the source PIM class
of the PIM path and choose exactly through which PIM associations the
PIM path should go. Again, applied to our example in Figure 5.4, it can
look like in Figure 5.7.

Figure 5.7: PIM path selection

49

5.3 Adjusting the PIM

There can be a situation when the user wants to map a PSM component to
a new non-existing PIM component. That is usually when the XML schema
described by the PSM diagram adds something new to the conceptual model
that was not there before.

5.3.1 Missing PIM classes

In the case of mapping a PSM class Cpsm, it is possible to add a new
PIM class Cpim instead of mapping Cpsm to an existing PIM class when the
user is asked. PIM associations are added between Cpim and every PIM class
Ci

pim represented by the children Ci
psm of Cpsm. The corresponding PSM as-

sociations will then represent these new PIM associations.
Another PIM association is added when mapping a PSM class D

′
psm to

D
′
pim and the fact that a child Dpsm of D

′
psm was mapped to a newly created

PIM class Dpim is discovered. The PIM association then leads between Dpim

and D
′
pim. This includes the situation when D

′
psm is also mapped to a new

PIM class.

5.3.2 PIM-less attributes

Another option when mapping PSM attributes is that Apsm will only be
present in the PSM and will have no counterpart in the PIM. In that case,
the attribute can be left unmapped and is called PIM-less. This option can
be selected by the user when a list of possible mappings is offered.

5.3.3 Missing PIM

A special case of a PIM is an empty PIM, i.e. a PIM with zero classes,
associations and attributes. Therefore, it is possible to use the approach
described above even if there is no PIM present. In that case, the user adds
the PIM classes as described in 5.3.1 until all the PSM classes from the
PSM diagram are mapped to some newly created PIM classes in the PIM.
The PSM attributes can be left as PIM-less and then propagated to the
PIM classes as necessary.

5.4 Analysis

In this section, we will determine the computational complexity of the de-
scribed algorithm. Let n be the number of PIM classes in the PIM, N be
the number of PSM classes in the PSM diagram, a be the maximal number
of attributes in one PIM/PSM class and s be the maximal length of a string

50

(names of classes and attributes, element labels). Next, let us assume that
S(s) is a function that returns the computational complexity of the algo-
rithm chosen to compare strings. We will follow Algorithm 1 and compute
the complexity for each step.

Initial attribute similarities - Algorithm 2

On line 4 we have performed a computation of a string similarity of two
attributes - O(S(s)). On lines 3 and 5 we have performed computations that
can be done in a constant time O(1). This was done for each PSM (N × a)
and each PIM (n × a) attribute. Therefore, the computational complexity
of this step is:

O(n×N × a2 × S(s))

Initial class similarities - Algorithm 3

On lines 3 and 4, we have performed computations of string similarities of
a PIM and a PSM class - O(S(s)). On line 5 we have combined these sim-
ilarities. This can be done in a constant time O(1). On line 6 we compute
attribute similarity of a PIM and a PSM class. The MAS (Equation 5.2)
takes O(a) as it computes a maximum of similarities between one PSM at-
tribute and all PIM attributes of one PIM class (a). Therefore, the CAS
(Equation 5.1) takes O(a2), because it sums the MAS from each PSM at-
tribute of a PSM class (a). Finally, on line 7 a combination of coefficients is
computed, which can be done in a constant time O(1). This routine is done
for each PIM and each PSM class, therefore the computational complexity
of this step is:

O(n×N × (a2 + S(s)))

Class mapping - Algorithm 4

In this step, we will use a sorting algorithm to sort the PIM classes offered
to the user. Let it be Heap sort3. Its running time in the worst case is
O(n× log(n)).

For a computation of the structural similarity adjustment, we use Dijk-
stra’s algorithm4. Its computational complexity can be O(m + n × log(n))
when using Fibonacci heap5, where m is a number of PIM associations in
the PIM.

If we are in a leaf, we only sort the PIM classes and offer them to the
user. This takes O(n × log(n)). Otherwise, we are in an inner class and in
addition to sorting the classes, we have to compute the structural similarity

3http://en.wikipedia.org/wiki/Heapsort
4http://en.wikipedia.org/wiki/Dijkstra’s_algorithm
5http://en.wikipedia.org/wiki/Fibonacci_heap

51

http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/Fibonacci_heap

coefficient. This means running the Dijkstra’s algorithm in the PIM up to
N times - once for each child of the current PSM class. This makes the
computational complexity of this option O(N × n× log(n) + n× log(n)).

This whole routine is done for each root of a PSM diagram (up to N)
and for each PSM class of the diagram (N). For simplicity, we will take into
account only the costlier of the two options described above. This makes the
computational complexity of this step:

O(N2 × (N × n× log(n) + n× log(n))) = O(N3 × n× log(n))

Attribute mapping - Algorithm 5

In this step, we need to sort the PIM attributes for each PSM attribute of
the PSM diagram. This takes:

O(N × a× (n× a× log(n× a))) = O(N × n× a2 × log(n× a))

Entire algorithm

When we sum the computational complexity of each described step, we get:

O(N × n× a2 × (log(n× a) + S(s)) +N3 × n× log(n))

Conclusion

As demonstrated above, the algorithm depends mainly on the number of
PSM classes O(N3) in the PSM diagram processed. This is not a problem,
because the number of PSM classes in a PSM diagram is usually considerably
less than the number of PIM classes in the PIM. In relation to the PIM, the
algorithm runs in O(n× log(n)) which cannot be better due to the use of a
sorting algorithm and an algorithm for the shortest paths in a graph.

52

Chapter 6

Evolution operations

In this chapter we describe a set of evolution operations that can be per-
formed on PIM and PSM levels (see Figure 3.1) in a system containing a
PIM and connected PSM diagrams representing XML schemas. We have im-
plemented a certain subset of these operations in XCase, which is described
in 3.1.6. We also lay down foundations of a formal system for operations de-
scription. The main concept of the operations is composition. There are a few
atomic operations that do not use other operations. Composite operations
can consist of these atomic ones. We will first describe the atomic operations
as they work on their respective levels. The propagation of changes between
the levels will be added later. Today’s software tools for the modeling of
XML schemas (e.g. Enterprise Architect [26]) do not focus on the propaga-
tion of changes between a PIM and a PSM, not to mention among one PIM
and more PSMs. But as we have shown in 1.1, it can be very helpful. Finally,
we will show some examples of composite operations. In the formal system,
addition operations are denoted α, operations that change components are
denoted δ and operations that delete components are denoted ρ.

Definition 6.1. An operation is a function. Its input is a system of a PIM
and multiple PSM diagrams and possibly other information required to fulfill
its purpose. Its output is a system modified by this operation. The operation
can leave the system in an inconsistent state and may therefore require to
perform additional operations to put the system to a consistent state.

6.1 Atomic operations

In this section we will describe atomic operations on both PIM and PSM
levels. These operations are then used to create composite operations.

53

6.1.1 PIM level

The PIM level contains constructs from UML class diagrams (see 3.1.4) -
Classes with attributes and associations connecting the classes.

Adding PIM components

The operations for adding PIM components are trivial. They are:

• α(Cpim) - Add a PIM class Cpim.

• α(Apim, Cpim) - Add a PIM attribute Apim to a PIM class Cpim.

• α(Rpim, C
1
pim, . . . , C

n
pim) - Add a PIM association Rpim (create a self-

reference or connect n PIM classes Ci
pim).

Changing PIM components

Changing a PIM component is also quite straightforward. The atomic oper-
ations are:

• δ(Cpim, name) - Rename a PIM class Cpim.

• δ(Apim, name) - Rename a PIM attribute Apim.

• δ(Rpim, name) - Rename a PIM association Rpim.

• δ(Apim, type/multiplicity/defaultvalue)
Change properties of a PIM attribute Apim (type, multiplicity, default
value).

• δ(Rpim, label/role1 , . . . , rolen/multiplicity1 , . . . ,multiplicityn)
Change properties of a PIM association Apim (label, roles, multiplici-
ties).

Deleting PIM components

As in many other problems, deleting a component is a little bit trickier than
adding a component, because of its connections to other components. These
atomic operations can be performed on their own safely:

• ρ(Apim) - Delete a PIM attribute Apim.

• ρ(Rpim) - Delete a PIM association Rpim.

54

Deleting PIM class ρ(Cpim) - deleting a PIM class Cpim - is an example
of an atomic operation that will lead to an inconsistent state of the system.
When a PIM class is deleted, all of its PIM attributes Ai=1...n

pim also need to

be deleted. In addition, all of the PIM associations Rj=1...m
pim connecting this

PIM class need to be deleted as well. Formally:

1. ∀i ∈ {1, . . . , n}ρ(Ai
pim).

2. ∀j ∈ {1, . . . ,m}ρ(Rj
pim).

6.1.2 PSM level

The PSM level contains PSM classes with PSM attributes and other con-
structs that are not discussed in this thesis (see 3.1.5). It is important to
realize that a PSM diagram has a forest structure.

Adding PSM components

There are only two addition operations on the PSM level, as PSM associa-
tions are created automatically when a PSM class is added under another
PSM class (or when it is reverse-engineered from an XML schema).

• α(Cpsm, C
′
psm) - Add a PSM class Cpsm as a child of a PSM class C

′
psm.

This also creates a PSM association Rpsm connecting them.

• α(Cpsm) - Add a PSM class Cpsm as a root of a PSM diagram.

• α(Apsm, Cpsm) - Add a PSM attribute Apsm to a PSM class Cpsm.

Changing PSM components

• δ(Cpsm, name) - Rename a PSM class.

• δ(Cpsm, elementlabel) - Change an element label of a PSM class.

• δ(Cpsm, C
′
psm) - Change the parent of a PSM class Cpsm to C

′
psm. This

means reconnecting the PSM association Rpsm leading to Cpsm.

• δ(Apsm, alias/type/multiplicity/defaultvalue) - Change properties of a
PSM attribute (alias, type, multiplicity, default value).

• δ(Rpsm,multiplicity) - Change multiplicity of a PSM association Rpsm.

• δ(Rpsm,PIMpath) - Change the PIM path represented by a PSM as-
sociation Rpsm.

55

Deleting PSM components

In the same way as when deleting PIM components, we will first list the
operations that are safe to perform. In this case, it is only ρ(Apsm) - the
deletion of a PSM attribute Apsm.

Deleting PSM association ρ(Rpsm) - deleting a PSM association Rpsm -
is an atomic operation. The PSM class, Cpsm to which this PSM association
leads, becomes a new root of the PSM diagram.

Deleting root PSM class ρ(Cpsm) - deleting a root PSM class Cpsm - is
also an atomic operation which leads to an inconsistent PSM diagram. For
the PSM diagram to be put to a consistent state, it involves a deletion of
all of Cpsm PSM attributes Ai=1...n

psm - ∀i ∈ {1, . . . , n}ρ(Ai
psm). In addition, all

PSM associations Rj=1...m
psm leading from Cpsm have to be deleted, making the

children of Cpsm new roots of the PSM diagram. ∀j ∈ {1, . . . ,m}ρ(Rj
psm).

6.2 Propagation of changes

The main advantage of the XSEM model (3.1.3) is that the components
on the PIM level are connected with the corresponding PSM components,
allowing the propagation of changes between the levels. We will now revisit
the operations described above in 6.1.1 and 6.1.2 and extend them with the
propagation of changes.

6.2.1 PIM level

It is obvious that addition operations do not require any propagation of
changes, as the newly created PIM components are not connected to any
of the PSM components. We can safely skip them and move straight to the
operations that change and delete PIM components. The designer can, of
course, use the standard XSEM model mechanisms to derive PSM compo-
nents from the new PIM components, which is already supported by XSEM
(see 3.1.3).

Changing PIM components

Renaming PIM class This operation has no effect on the connected
PSM classes, as they use their own names. The only thing to consider is
during implementation. When a PSM class has a different name than the
represented PIM class, both names have do be displayed.

56

Renaming PIM attribute This operation has no effect on the connected
PSM attributes, as they use their aliases.

Renaming PIM association This operation has no effect on the con-
nected1 PSM associations.

Changing properties of PIM attribute When changing properties of
a PIM attribute such as the data type, multiplicity or default value, this
change usually needs to be propagated to all the connected PSM attributes
Ai

psm - ∀i ∈ {1, . . . , n}δ(Apsm, property). However, it is up to the implemen-
tation whether this change is propagated automatically or the user is asked
if the propagation is required. Technically, it is possible for the PIM at-
tribute to have different properties than the connected PSM attribute, but
it is unusual.

Changing properties of PIM association A change of properties of a
PIM association such as the label or the roles has no effect on the connected
PSM associations. On the other hand, a change of multiplicities needs to be
propagated to all the affected PSM associations Ri=1...n

psm , as it has a direct
impact on their multiplicities - ∀i ∈ {1, . . . , n}δ(Rpsm,multiplicity).

Deleting PIM components

Deleting PIM attribute This operation requires either deleting all of
the connected PSM attributes Ai=1...n

psm or converting them to PIM-less -
∀i ∈ {1, . . . , n}ρ(Ai

psm).

Deleting PIM association When deleting a PIM association, all of the
connected PSM associations Ri=1...n

psm need to be removed as well - ∀i ∈
{1, . . . , n}ρ(Ri

psm). For details, see the description of deleting a PSM as-
sociation in 6.1.2.

Deleting PIM class Deleting a PIM class requires removing all PIM as-
sociations connecting it. These are removed in a manner described in the
previous paragraph. In addition, all the PIM attributes of this PIM class
need to be removed, which was also described earlier. Finally, when deleting
the PIM class itself, all the derived PSM classes need to be removed as well.
For details, see the description of deleting a PSM class in 6.1.2.

1When talking about PSM associations connected to PIM associations, what is tech-
nically meant is PSM associations that are connected to PIM paths which this PIM as-
sociation is part of.

57

6.2.2 PSM level

There is one operation listed in 6.1.2 that may need the automatic propa-
gation of changes, and that is changing properties of a PSM attribute. With
the introduction of the mapping algorithm in Chapter 5, it is now possible
to add PSM classes and PSM attributes directly to a PSM diagram and
then create the proper mappings to the PIM. This was not possible before,
as all the PSM components needed to be derived from the PIM in order to
create the mappings. Therefore, the addition operations on the PSM level
can be propagated with the assistance of the user using a slightly modified
version of the mapping algorithm described in Chapter 5. The propagation
of changes for these operations is also described in this section.

Changing properties of PSM attribute

A change of properties of a PSM attribute can be propagated to the PIM at-
tribute Apim to which this PSM attribute is connected - δ(Apim, property).
The user should be asked if the change is to be propagated. If it is, it should
initiate the propagation of a change of properties of the PIM attribute Apim

described earlier. This means that the change can be propagated to the PIM
and then back to all the PSM diagrams in which a PSM attribute derived
from Apim is present.

Adding PSM class as root

When adding a new PSM class Cpsm, which is not yet mapped to any
PIM class, as a root of a PSM diagram, the user is asked to which PIM class
is Cpsm to be mapped to. If the user chooses to create a new PIM class, this
change is propagated as a creation of a PIM class Cpim. Formally: α(Cpim).

Adding PSM class as child

When adding a new PSM class Cpsm, which has no counterpart in the PIM,
as a child of a PSM class C

′
psm, the user is asked to which PIM class is

Cpsm to be mapped to. If the user chooses to create a new PIM class, this
change is propagated as a creation of a PIM class Cpim and a PIM association
Rpim connecting it to C

′
pim (the PIM class represented by C

′
psm). Formally:

α(Cpim), α(Rpim, Cpim, C
′
pim).

Adding PSM attribute

When a new PSM attribute Apsm is added to a PSM class Cpsm representing
a PIM class Cpim, the user is asked to which PIM attribute is Apsm to be
mapped. If the user chooses to add a new PIM attribute Apim, this addition

58

can be propagated as an addition of Apim to the PIM class Cpim. Formally:
α(Apim, Cpim).

6.3 Composite operations

With the propagation of changes described in 6.2 in mind, it is possible to
compose various more complex operations from the atomic PIM and PSM
operations described in 6.1. Below, we will demonstrate complex operations
on several examples. We will always consider the PIM from Figure 1.4, but
for simplicity, we will only show the parts that are changed.

Moving PIM attribute

A movement of a PIM attribute Apim from one PIM class to another is a
composite operation. It consists of removing Apim from the original PIM class
Cpim and adding it to the target PIM class C

′
pim. The PSM attributes Ai

psm

derived from Apim are deleted through the propagation of changes when Apim

is removed from Cpim. On the other hand, when Apim is placed into C
′
pim,

no change is propagated. Therefore we must add a PSM attribute Aj
psm to

each PSM class Cj=1...m
psm derived from C

′
pim. Formally:

1. ρ(Apim)

2. α(Apim, C
′
pim)

3. ∀j ∈ {1, . . . ,m}α(Aj
psm, C

j
psm)

Example 6.1. We will move the PIM attribute Country from the PIM class
Address to the PIM class Customer as can be seen in Figures 6.1(a) and
6.1(b). The affected PSM diagrams are Message 1 and Message 4, which can
be seen in Figures 6.1(c) and 6.1(d).

Changing PIM attribute into PIM class

It is possible to change an existing PIM attribute Apim of a PIM class Cpim

into a new PIM class. In this case, we will remove Apim - all derived PSM at-
tributes Ai

psm will be removed through the propagation of changes. Then we

will create a new PIM class C
′
pim with the name of Apim and add a PIM as-

sociation Rpim connecting Cpim and C
′
pim. Because we want a similar effect

on the PSM level, we need to add a PSM class Ci
psm derived from C

′
pim as a

child to each C
′i
psm from which Ai

psm was removed. Formally:

1. ρ(Apim)

2. α(C
′
pim), α(Rpim, Cpim, C

′
pim)

59

(a) PIM before (b) PIM after

(c) Message 4 before (d) Message 4 after

Figure 6.1: Examples of moving a PIM attribute

3. ∀i ∈ {1, . . . n}α(Ci
psm, C

′i
psm)

4. ∀i ∈ {1, . . . n}δ(Ri
psm,PIMpath(Cpim, C

′
pim))

Example 6.2. We will change the PIM attribute CreditCardNo of the
PIM class Customer into a new PIM class, as can be seen in Figures 6.2(a)
and 6.2(b). The affected PSM diagram is Message 1, which can be seen in
Figures 6.2(c) and 6.2(d).

Splitting PIM attribute

Splitting a PIM attribute Apim of a PIM class Cpim is a composite opera-
tion. We will simply add a new PIM attribute A

′
pim to Cpim. Then to each

PSM class Ci=1...n
psm derived from Cpim we will add a PSM attribute Ai

psm

derived from A
′
pim. Formally:

60

(a) PIM before (b) PIM after

(c) Message 1 before (d) Message 1 after

Figure 6.2: Examples of changing a PIM attribute into a PIM class

1. α(A
′
pim, Cpim)

2. ∀i ∈ {1, . . . n}α(Ai
psm, C

i
psm)

Example 6.3. This operation can be used to solve the problem described in
1.1 - a change of a representation of a customer’s name from a single value
name into two values forename and surname. The operation is performed
on the PIM class Customer as can be seen in Figures 6.3(a) and 6.3(b). The
affected PSM diagrams are Message 1 and Message 4, which can be seen in
Figures 6.3(c) and 6.3(d).

61

(a) PIM before (b) PIM after

(c) Message 4 before (d) Message 4 after

Figure 6.3: Examples of splitting a PIM attribute

Deleting a PSM tree

Deleting a PSM tree rooted in Cpsm is a composite operation. We will denote
it ω(Cpsm). First of all, the PSM associations Ri=1...n

psm leading to the children
of Cpsm need to be removed. This means that all the children Ci=1...n

psm of Cpsm

are now new roots. The trees rooted in them need to be deleted recursively.
Formally:

1. ∀i ∈ {1, . . . , n}ρ(Ri
psm)

2. ∀i ∈ {1, . . . , n}ω(Ci
psm)

62

Chapter 7

Conclusions

In this thesis, we began with an introduction to the problem of XML schema
evolution and we showed that the current situation, in which large sets of
XML schemas must be altered manually when the IT infrastructure evolves,
is unsatisfactory (see Chapter 1). A brief introduction to XML technologies
followed in Chapter 2. In Chapter 3 we introduced a 5-level XML evolution
architecture consisting of conceptual and logical levels. In this architecture,
this thesis is focused on the PIM and PSM conceptual levels. In the descrip-
tion of the conceptual levels we provided a survey of various approaches to
conceptual modeling of XML data and then we presented XSEM, a concep-
tual model for XML, including its first implementation, a tool called XCase.
A survey of current schema matching techniques followed in Chapter 4, de-
scribing element-level techniques like string-based matching, language-based
matching, constraint-based matching and linguistic resources such as the-
sauri and also describing structure-level technique graph matching. Then we
surveyed some of the current work in the area of schema matching and XML
schema evolution.

In the second half of this thesis, a new semi-automatic technique of map-
ping XML schemas to a conceptual model was introduced (Chapter 5). It
incorporates element-level and structure-level methods of schema matching
and is customized to fit the XSEM model. Its main advantage over the
method described in 4.1.4 is its computational speed, which enables this
method to process large conceptual diagrams. In addition, a set of evolution
operations was presented for both PIM and PSM conceptual levels, includ-
ing the propagation of changes between those levels (Chapter 6). With the
mapping method present and with the set of evolution operations in mind,
we can summarize the XML schema evolution process in a few simple steps:

1. Create mappings between each XML schema and the conceptual model
(as in Chapter 5)

2. With these mappings present, perform evolution operations (as in

63

Chapter 6)

3. Generate new, evolved XML schemas

7.1 Open problems

There are a few problems not covered in this thesis that we need solved for
this whole process to work in practice, but that does not seem difficult.

7.1.1 Reverse engineering of XML schemas

One of the open problems is the process of getting a PSM diagram from an
XML schema. One possibility of getting a PSM diagram from a schema in
XML Schema language is sketched out in [19], but it requires a specific type
of schema and therefore is not universal. Further research is needed to make
a method that would reverse-engineer any XML Schema and also to accept
different XML schema languages like Relax NG.

7.1.2 Generating XML schemas from PSM diagrams

Another open problem is the generation of XML schemas from PSM dia-
grams. There is a method proposed in [18, p. 109-128] and partially imple-
mented in XCase, which generates an XML Schema from a PSM diagram,
but further research is needed for the method to allow different schema styles
and additional languages like Relax NG.

7.2 Future work

In our future work, we will focus on extending the process of change propaga-
tion to the whole 5-level XML evolution architecture, so it will be possible to
really evolve the whole XML system in an IT infrastructure from one place
- the conceptual diagram.

7.2.1 Mapping creation enhancements

It is clear that while the method for creating mappings of XML schemas to
the conceptual model presented in 4.1.4 is computationally too expensive, it
provides maximal comfort and accuracy of suggested mappings, as it utilizes
all information that the PIM and PSM diagrams contain. On the other hand,
the method proposed in this thesis is fast and can process large diagrams,
but utilizes a smaller amount of information, thus providing less accuracy.
Our future research in this area will be aimed at providing a reasonable

64

compromise between these two methods: increasing accuracy while checking
the computational cost.

To be specific, the method in this thesis (see Chapter 5) only considers the
shortest PIM paths when adjusting for the structural similarities of classes.
It would be possible to consider, for example, k shortest paths, measure
similarities with PIM association labels on the paths and offer them to the
user in an order influenced by these similarities, instead of relying on the
user to fix eventual inaccuracies manually.

7.2.2 XSLT transformations for modifying XML doc-
uments

One of the possible ways our research could go is toward automatic gener-
ation of XSLT scripts that would modify the existing XML documents so
that they stay compatible with the evolved XML schemas. This could be
done either by propagating the changes directly to the XML documents by
elementary XSLT transformations, or by a detection of changes between two
versions of a PSM diagram and generation of a corresponding XSLT script
containing all the changes between two versions at once.

65

Chapter 8

CD contents

The attached CD contains a PDF version of this thesis - thesis.pdf. In addi-
tion, it contains XCase installer in the XCase folder.

66

Bibliography

[1] Altova Inc. XML Spy 2009. http://www.altova.com.

[2] A. Badia. Conceptual Modeling for Semistructured Data. In Proceed-
ings of the 3rd International Conference on Web Information Systems
Engineering Workshops, pages 170–177, Singapore, Dec. 2002. IEEE
Computer Society.

[3] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of
semistructured and structured data sources. SIGMOD Rec., 28(1):54–
59, 1999.

[4] M. Bernauer, G. Kappel, and G. Kramler. Representing XML Schema in
UML - An UML Profile for XML Schema. Technical Report November
2003, Department of Computer Science, National University of Singa-
pore, 2003.

[5] R. Bourret. XML and Databases. http://www.rpbourret.com/xml/

XMLAndDatabases.htm, September 2005.

[6] P. Chen. The Entity-Relationship Model–Toward a Unified View of
Data. ACM Transactions on Database Systems, 1(1):9–36, Mar. 1976.

[7] J. Clark and M. Makoto. RELAX NG Specification. Oasis, De-
cember 2001. http://www.oasis-open.org/committees/relax-ng/

spec-20011203.html.

[8] D. Booth, C. K. Liu. Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer. W3C, June 2007. http://www.w3.org/

TR/wsdl20-primer/.

[9] E. Domı́nguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving
XML Schemas and Documents Using UML Class Diagrams. In K. V.
Andersen, J. K. Debenham, and R. Wagner, editors, DEXA, volume
3588 of Lecture Notes in Computer Science, pages 343–352. Springer,
2005.

67

http://www.altova.com
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/

[10] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Hei-
delberg (DE), 2007.

[11] M. Klettke. Conceptual XML Schema Evolution - The CoDEX Ap-
proach for Design and Redesign. In M. Jarke, T. Seidl, C. Quix, D. Ken-
sche, S. Conrad, E. Rahm, R. Klamma, H. Kosch, M. Granitzer, S. Apel,
M. Rosenmüller, G. Saake, and O. Spinczyk, editors, Workshop Pro-
ceedings Datenbanksysteme in Business, Technologie und Web (BTW
2007), pages 53–63, Aachen, Germany, March 2007.

[12] B. Loscio, A. Salgado, and L. Galvao. Conceptual Modeling of XML
Schemas. In Proceedings of the Fifth ACM CIKM International Work-
shop on Web Information and Data Management, pages 102–105, New
Orleans, USA, Nov. 2003.

[13] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching
with Cupid. In VLDB ’01: Proceedings of the 27th International Con-
ference on Very Large Data Bases, pages 49–58, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

[14] M. Mani. Erex: A conceptual model for xml. In Proceedings of the Sec-
ond International XML Database Symposium, pages 128–142, Toronto,
Canada, Aug. 2004.

[15] G. A. Miller. Wordnet: a lexical database for english. Commun. ACM,
38(11):39–41, November 1995.

[16] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Manage-
ment Group, 2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[17] K. Narayanan and S. Ramaswamy. Specifications for Mapping UML
Models to XML. In Proceedings of the 4th Workshop in Software Model
Engineering, Montego Bay, Jamaica, 2005.

[18] M. Nečaský. Conceptual Modeling for XML, volume 99 of Dissertations
in Database and Information Systems Series. IOS Press/AKA Verlag,
January 2009.

[19] M. Nečaský. Reverse Engineering of XML Schemas to Conceptual Di-
agrams. In Proceedings of The Sixth Asia-Pacific Conference on Con-
ceptual Modelling, pages 117–128, Wellington, New Zealand, January
2009. Australian Computer Society.

[20] Object Management Group. UML Infrastructure Specification 2.1.2,
nov 2007. http://www.omg.org/spec/UML/2.1.2/Infrastructure/

PDF/.

68

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/

[21] L. Palopoli, G. Terracina, and D. Ursino. DIKE: a system support-
ing the semi-automatic construction of cooperative information systems
from heterogeneous databases. Softw. Pract. Exper., 33(9):847–884,
2003.

[22] G. Psaila. ERX: A Conceptual Model for XML Documents. In Pro-
ceedings of the 2000 ACM Symposium on Applied Computing, pages
898–903, Como, Italy, Mar. 2000. ACM.

[23] N. Routledge, L. Bird, and A. Goodchild. UML and XML Schema.
In Proceedings of 13th Australasian Database Conference (ADC 2002).
ACS, 2002.

[24] A. Sengupta, S. Mohan, and R. Doshi. XER - Extensible Entity Rela-
tionship Modeling. In Proceedings of the XML 2003 Conference, pages
140–154, Philadelphia, USA, Dec. 2003.

[25] P. Shvaiko and J. Euzenat. A survey of schema-based matching ap-
proaches. Journal on Data Semantics, 4:146–171, 2005.

[26] Sparx Systems. Enterprise architect. http://www.sparxsystems.com.
au/products/ea/index.html.

[27] T. Bray and J. Paoli and C. M. Sperberg-McQueen and E. Maler
and F. Yergeau. Extensible Markup Language (XML) 1.0 (Fifth
Edition). W3C, November 2008. http://www.w3.org/TR/2008/

REC-xml-20081126/.

[28] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures (Second Edition). W3C, October 2004.
http://www.w3.org/TR/xmlschema-1/.

69

http://www.sparxsystems.com.au/products/ea/index.html
http://www.sparxsystems.com.au/products/ea/index.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xmlschema-1/

Appendix A

Used XML Schemas

The XML schemas listed here are used as PSM diagrams (see 3.1.5) in the
thesis. They are intentionally written without the <xs:schema> head, as it
is always the same.

A.1 Figure 4.1(a)

<xs:element name="PurchaseOrder" type="PurchaseOrder" />

<xs:complexType name="City" />

<xs:complexType name="Street" />

<xs:complexType name="Address">

<xs:sequence>

<xs:element name="City" type="City" />

<xs:element name="Street" type="Street" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="PurchaseOrder">

<xs:sequence>

<xs:element name="ShippingAddress" type="Address" />

<xs:element name="BillingAddress" type="Address" />

</xs:sequence>

</xs:complexType>

70

A.2 Figure 4.1(b)

<xs:element name="PurchaseOrder" type="PurchaseOrder" />

<xs:complexType name="City" />

<xs:complexType name="Street" />

<xs:complexType name="Address">

<xs:sequence>

<xs:element name="City" type="City" />

<xs:element name="Street" type="Street" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="PurchaseOrder">

<xs:sequence>

<xs:element name="ShippingInfo" type="Info" />

<xs:element name="BillingInfo" type="Info" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Info">

<xs:sequence>

<xs:element name="Address" type="Address" />

...

</xs:sequence>

</xs:complexType>

71

A.3 Message 1 (Figure 1.2(a))

<xs:element name="message" type="Message" />

<xs:complexType name="Message">

<xs:sequence>

<xs:element name="order" type="Order" />

</xs:sequence>

<xs:attribute name="Time" type="xs:time"/>

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

<xs:complexType name="Order">

<xs:sequence>

<xs:element name="customer" type="Customer" />

<xs:element name="list" type="List" />

</xs:sequence>

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

<xs:complexType name="Customer">

<xs:sequence>

<xs:element name="address" type="Address" />

</xs:sequence>

<xs:attribute name="Name" type="xs:string"/>

<xs:attribute name="CreditCardNo" type="xs:string"/>

</xs:complexType>

<xs:complexType name="Address">

<xs:attribute name="Street" type="xs:string"/>

<xs:attribute name="City" type="xs:string"/>

<xs:attribute name="Country" type="xs:string"/>

</xs:complexType>

<xs:complexType name="List">

<xs:sequence>

<xs:element name="item" type="Item"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Item">

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

72

A.4 Message 2 (Figure 1.2(b))

<xs:element name="message" type="Message" />

<xs:complexType name="Message">

<xs:sequence>

<xs:element name="list" type="List" />

</xs:sequence>

<xs:attribute name="Time" type="xs:time"/>

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

<xs:complexType name="List" />

A.5 Message 3 (Figure 1.2(c))

<xs:element name="message" type="Message" />

<xs:complexType name="Message">

<xs:sequence>

<xs:element name="reservation" type="Reservation"

minOccurs="0" />

</xs:sequence>

<xs:attribute name="Time" type="xs:time"/>

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

<xs:complexType name="Reservation">

<xs:attribute name="Number" type="xs:integer"/>

</xs:complexType>

73

A.6 Message 4 (Figure 1.3(a))

<xs:element name="message" type="Message" />

<xs:complexType name="Message">

<xs:sequence>

<xs:element name="customer" type="Customer" />

<xs:element name="reservation" type="Reservation" />

</xs:sequence>

<xs:attribute name="Time" type="xs:time"/>

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

<xs:complexType name="Customer">

<xs:sequence>

<xs:element name="address" type="Address" />

</xs:sequence>

<xs:attribute name="Name" type="xs:string"/>

</xs:complexType>

<xs:complexType name="Address">

<xs:attribute name="Street" type="xs:string"/>

<xs:attribute name="City" type="xs:string"/>

<xs:attribute name="Country" type="xs:string"/>

</xs:complexType>

<xs:complexType name="Reservation">

<xs:attribute name="Number" type="xs:integer"/>

</xs:complexType>

A.7 Message 5 (Figure 1.3(b))

<xs:element name="message" type="Message" />

<xs:complexType name="Message">

<xs:attribute name="Time" type="xs:time"/>

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

74

A.8 Message 6 (Figure 1.3(c))

<xs:element name="message" type="Message" />

<xs:complexType name="Message">

<xs:sequence>

<xs:element name="reservation" type="Reservation"

minOccurs="0" />

</xs:sequence>

<xs:attribute name="Time" type="xs:time"/>

<xs:attribute name="ID" type="xs:integer"/>

</xs:complexType>

<xs:complexType name="Reservation">

<xs:attribute name="Number" type="xs:integer"/>

</xs:complexType>

75

	Introduction
	Motivation
	Aim of this thesis
	Outline

	XML Technologies
	XML
	Constructs
	Syntax
	Correctness

	XML schemas

	XML Evolution Architecture
	Conceptual levels
	Model-Driven Architecture
	Earlier approaches
	XSEM
	XSEM PIM components
	XSEM PSM components
	XCase - Tool for XML Data Modeling

	Logical levels
	Schema level
	Operational level
	Extensional level

	Related work
	Existing approaches to schema matching
	Element-level techniques
	Structure-level techniques
	Cupid
	Necaský

	Existing approaches to XML schema evolution
	E. Domínguez et al.
	Meike Klettke: Conceptual XML Schema Evolution

	Mapping creation
	Algorithm description
	Attribute similarity
	PIM and PSM class similarity
	Structural similarity and class mapping
	Attribute mapping
	PSM associations

	Methods for refining PIM paths
	Refusing associations
	Manual PIM path selection

	Adjusting the PIM
	Missing PIM classes
	PIM-less attributes
	Missing PIM

	Analysis

	Evolution operations
	Atomic operations
	PIM level
	PSM level

	Propagation of changes
	PIM level
	PSM level

	Composite operations

	Conclusions
	Open problems
	Reverse engineering of XML schemas
	Generating XML schemas from PSM diagrams

	Future work
	Mapping creation enhancements
	XSLT transformations for modifying XML documents

	CD contents
	Bibliography
	Used XML Schemas
	Figure 4.1(a)
	Figure 4.1(b)
	Message 1 (Figure 1.2(a))
	Message 2 (Figure 1.2(b))
	Message 3 (Figure 1.2(c))
	Message 4 (Figure 1.3(a))
	Message 5 (Figure 1.3(b))
	Message 6 (Figure 1.3(c))

